
Cortex™-R5
Revision: r1p2

Technical Reference Manual
Copyright © 2010-2011 ARM. All rights reserved.
ARM DDI 0460D (ID092411)



 

Cortex-R5
Technical Reference Manual

Copyright © 2010-2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries, 
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the 
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be 
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the 
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or 
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or 
damage arising from the use of any information in this document, or any error or omission in such information, or any 
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license 
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this 
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

03 August 2010 A Confidential First release for r0p0

29 October 2010 B Non-Confidential First release for r1p0

11 February 2011 C Non-Confidential First release for r1p1

15 September 2011 D Non-Confidential First release for r1p2
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. ii
ID092411 Non-Confidential



Contents
Cortex-R5 Technical Reference Manual

Preface
About this book .........................................................................................................  viii
Feedback ...................................................................................................................  xii

Chapter 1 Introduction
1.1 About the processor .................................................................................................  1-2
1.2 Compliance ..............................................................................................................  1-3
1.3 Features ...................................................................................................................  1-4
1.4 Interfaces .................................................................................................................  1-5
1.5 Configurable options ................................................................................................  1-6
1.6 Test features ..........................................................................................................  1-12
1.7 Product documentation, design flow, and architecture ..........................................  1-13
1.8 Changes from previous version .............................................................................  1-15

Chapter 2 Functional Description
2.1 About the functions ..................................................................................................  2-2
2.2 Interfaces ...............................................................................................................  2-10
2.3 Clocking and resets ...............................................................................................  2-12
2.4 Operation ...............................................................................................................  2-18

Chapter 3 Programmers Model
3.1 About the programmers model ................................................................................  3-2
3.2 Modes of operation and execution ...........................................................................  3-3
3.3 Memory model .........................................................................................................  3-5
3.4 Coherency ...............................................................................................................  3-6
3.5 Data structures ........................................................................................................  3-8
3.6 Registers ..................................................................................................................  3-9
3.7 Program status registers ........................................................................................  3-12
3.8 Exceptions .............................................................................................................  3-17
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. iii
ID092411 Non-Confidential



Contents
3.9 Acceleration of execution environments ................................................................  3-28
3.10 Unaligned and mixed-endian data access support ................................................  3-29
3.11 Big-endian instruction support ...............................................................................  3-30

Chapter 4 System Control
4.1 About system control ...............................................................................................  4-2
4.2 Register summary ....................................................................................................  4-7
4.3 Register descriptions ...............................................................................................  4-9

Chapter 5 Prefetch Unit
5.1 About the prefetch unit .............................................................................................  5-2
5.2 Branch prediction .....................................................................................................  5-3
5.3 Return stack .............................................................................................................  5-5
5.4 Controlling instruction prefetch and program flow prediction ...................................  5-6

Chapter 6 Events and Performance Monitor
6.1 About the events ......................................................................................................  6-2
6.2 About the PMU ........................................................................................................  6-6
6.3 Performance monitoring registers ............................................................................  6-7
6.4 Event bus interface ................................................................................................  6-20

Chapter 7 Memory Protection Unit
7.1 About the MPU ........................................................................................................  7-2
7.2 Memory types ..........................................................................................................  7-7
7.3 Region attributes ......................................................................................................  7-8
7.4 MPU interaction with memory system .....................................................................  7-9
7.5 MPU faults .............................................................................................................  7-10
7.6 MPU software-accessible registers .......................................................................  7-11

Chapter 8 Level One Memory System
8.1 About the L1 memory system ..................................................................................  8-2
8.2 About the error detection and correction schemes ..................................................  8-4
8.3 Fault handling ..........................................................................................................  8-7
8.4 About the TCMs .....................................................................................................  8-13
8.5 About the caches ...................................................................................................  8-18
8.6 Internal exclusive monitor ......................................................................................  8-34
8.7 Memory types and L1 memory system behavior ...................................................  8-35
8.8 Error detection events ............................................................................................  8-36

Chapter 9 Level Two Interface
9.1 About the L2 interface ..............................................................................................  9-2
9.2 AXI master interface ................................................................................................  9-5
9.3 AXI master interface transfers .................................................................................  9-8
9.4 AXI slave interface .................................................................................................  9-21
9.5 Enabling or disabling AXI slave accesses .............................................................  9-24
9.6 Accessing RAMs using the AXI slave interface .....................................................  9-25
9.7 Peripheral interfaces ..............................................................................................  9-36
9.8 Accelerator Coherency Port interface ....................................................................  9-53

Chapter 10 Power Control
10.1 About power control ...............................................................................................  10-2
10.2 Power management ...............................................................................................  10-3

Chapter 11 FPU Programmers Model
11.1 About the FPU programmers model ......................................................................  11-2
11.2 General-purpose registers .....................................................................................  11-4
11.3 System registers ....................................................................................................  11-5
11.4 Modes of operation ..............................................................................................  11-12
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. iv
ID092411 Non-Confidential



Contents
11.5 Compliance with the IEEE 754 standard .............................................................  11-13

Chapter 12 Debug
12.1 Debug systems ......................................................................................................  12-2
12.2 About the debug unit ..............................................................................................  12-3
12.3 Debug register interface ........................................................................................  12-5
12.4 Debug register descriptions .................................................................................  12-10
12.5 Management registers .........................................................................................  12-33
12.6 Debug events .......................................................................................................  12-40
12.7 Debug exception ..................................................................................................  12-42
12.8 Debug state .........................................................................................................  12-45
12.9 Cache debug .......................................................................................................  12-50
12.10 External debug interface ......................................................................................  12-51
12.11 Using the debug functionality ...............................................................................  12-54
12.12 Debugging systems with energy management capabilities .................................  12-70

Chapter 13 Integration Test Registers
13.1 About Integration Test Registers ...........................................................................  13-2
13.2 Summary of the processor registers used for integration testing ..........................  13-3
13.3 Processor integration testing .................................................................................  13-4

Appendix A Signal Descriptions
A.1 About the processor signal descriptions ..................................................................  A-2
A.2 Global signals ..........................................................................................................  A-3
A.3 Configuration signals ...............................................................................................  A-4
A.4 Interrupt signals, including VIC interface signals .....................................................  A-8
A.5 L2 interface signals ..................................................................................................  A-9
A.6 TCM interface signals ............................................................................................  A-22
A.7 Redundant CPU signals ........................................................................................  A-25
A.8 Debug interface signals .........................................................................................  A-26
A.9 ETM interface signals ............................................................................................  A-28
A.10 Test signals ............................................................................................................  A-29
A.11 MBIST signals ........................................................................................................  A-30
A.12 Validation signals ...................................................................................................  A-31
A.13 FPU signals ...........................................................................................................  A-32
A.14 Split/Lock ...............................................................................................................  A-33
A.15 Power modes .........................................................................................................  A-34

Appendix B Cycle Timings and Interlock Behavior
B.1 About cycle timings and interlock behavior ..............................................................  B-3
B.2 Register interlock examples .....................................................................................  B-6
B.3 Data processing instructions ....................................................................................  B-7
B.4 QADD, QDADD, QSUB, and QDSUB instructions ..................................................  B-9
B.5 Media data-processing ..........................................................................................  B-10
B.6 Sum of Absolute Differences (SAD) ......................................................................  B-11
B.7 Multiplies ................................................................................................................  B-12
B.8 Divide .....................................................................................................................  B-14
B.9 Branches ................................................................................................................  B-15
B.10 Processor state updating instructions ....................................................................  B-16
B.11 Single load and store instructions ..........................................................................  B-17
B.12 Load and Store Double instructions .......................................................................  B-19
B.13 Load and Store Multiple instructions ......................................................................  B-20
B.14 RFE and SRS instructions .....................................................................................  B-23
B.15 Synchronization instructions ..................................................................................  B-24
B.16 Coprocessor instructions .......................................................................................  B-25
B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions ..................................  B-26
B.18 Miscellaneous instructions .....................................................................................  B-27
B.19 Floating-point register transfer instructions ............................................................  B-28
B.20 Floating-point load/store instructions .....................................................................  B-29
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. v
ID092411 Non-Confidential



Contents
B.21 Floating-point single-precision data processing instructions .................................  B-31
B.22 Floating-point double-precision data processing instructions ................................  B-32
B.23 Dual issue ..............................................................................................................  B-33

Appendix C ECC Schemes
C.1 ECC scheme selection guidelines ........................................................................... C-2

Appendix D Memory Ordering
D.1 Memory ordering ...................................................................................................... D-2
D.2 Virtual AXI peripheral interface ................................................................................ D-3

Appendix E Revisions
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. vi
ID092411 Non-Confidential



Preface

This preface introduces the Cortex-R5 Technical Reference Manual. It contains the following 
sections:
• About this book on page viii
• Feedback on page xii.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. vii
ID092411 Non-Confidential



Preface 
About this book
This book is for Cortex-R5 processors.

Note
 • The Cortex-R5F processor is a Cortex-R5 processor that includes the optional Floating 

Point Unit (FPU) extension.

• In this book, references to the Cortex-R5 processor also apply to the Cortex-R5F 
processor, unless the context makes it clear that this is not the case.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are 
designing or programming a System-on-Chip (SoC) that uses the Cortex-R5 processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 
Read this for an introduction to the processor and descriptions of the major 
functional blocks.

Chapter 2 Functional Description 
Read this for a description of the functionality of the product.

Chapter 3 Programmers Model 
Read this for a description of the processor registers and programming 
information.

Chapter 4 System Control 
Read this for a description of the system control coprocessor registers and 
programming information.

Chapter 5 Prefetch Unit 
Read this for a description of the functions of the Prefetch Unit (PFU), including 
dynamic branch prediction and the return stack.

Chapter 6 Events and Performance Monitor 
Read this for a description of the Performance Monitoring Unit (PMU) and the 
event bus.

Chapter 7 Memory Protection Unit 
Read this for a description of the Memory Protection Unit (MPU) and the access 
permissions process.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. viii
ID092411 Non-Confidential



Preface 
Chapter 8 Level One Memory System 
Read this for a description of the Level One (L1) memory system.

Chapter 9 Level Two Interface 
Read this for a description of the features of the Level Two (L2) interface not 
covered in the AMBA AXI Protocol Specification.

Chapter 10 Power Control 
Read this for a description of the power control facilities.

Chapter 11 FPU Programmers Model 
Read this for a description of the Floating Point Unit (FPU) support in the 
Cortex-R5F processor.

Chapter 12 Debug 
Read this for a description of the debug support.

Chapter 13 Integration Test Registers 
Read this for a description of the Integration Test Registers, and of integration 
testing of the processor with an ETM-R5 trace macrocell.

Appendix A Signal Descriptions 
Read this for a description of the inputs and outputs of the processor.

Appendix B Cycle Timings and Interlock Behavior 
Read this for a description of the instruction cycle timing and instruction 
interlocks.

Appendix C ECC Schemes 
Read this for a description of how to select the Error Checking and Correction 
(ECC) scheme depending on the Tightly-Coupled Memory (TCM) configuration.

Appendix D Memory Ordering 
Read this for a description of the processor memory ordering and the virtual AXI 
peripheral interface.

Appendix E Revisions 
Read this for a description of the technical changes between released issues of this 
book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for 
those terms. The ARM Glossary does not contain terms that are industry standard unless the 
ARM meaning differs from the generally accepted meaning.

See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Conventions

Conventions that this book can use are described in:
• Typographical on page x
• Timing diagrams on page x
• Signals on page xi.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. ix
ID092411 Non-Confidential



Preface 
Typographical

The typographical conventions are:

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal 
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter 
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code 
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing 
diagrams. Variations, when they occur, have clear labels. You must not assume any timing 
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the 
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and 
they look similar to the bus change shown in Key to timing diagram conventions. If a timing 
diagram shows a single-bit signal in this way then its value does not affect the accompanying 
description.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. x
ID092411 Non-Confidential



Preface 
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Lower-case m At the end of a signal name denotes a value that is 0 or 1, to indicate the 
CPU to which the signal applies. 
In a single processor system, m is always 0.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for 
other relevant information:

• AMBA® AXI Protocol Specification (ARM IHI 0022)

• AMBA 3 APB Protocol Specification (ARM IHI 0024)

• AMBA 3 AHB-Lite Protocol Specification (ARM IHI 0033)

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)

• ARM PrimeCell® Vectored Interrupt Controller (PL192) Technical Reference Manual 
(ARM DDI 0273)

• Cortex-R5 Integration Manual (ARM DIT 0016)

• Cortex-R5 Configuration and Sign-off Guide (ARM DII 0255)

• CoreSight™ DAP-Lite Technical Reference Manual (ARM DDI 0316) 

• CoreSight ETM-R5 Technical Reference Manual (ARM DII 0469)

• RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

• Application Note 98, VFP Support Code (ARM DAI 0098)

• ARM Synchronization Primitives (ARM DHT 0008).

Other publications

This section lists relevant documents published by third parties:

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

• JEP106M, Standard Manufacturer’s Identification Code, JEDEC Solid State Technology 
Association.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. xi
ID092411 Non-Confidential



Preface 
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and 
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DDI 0460D
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the 
quality of the represented document when used with any other PDF reader.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. xii
ID092411 Non-Confidential



Chapter 1 
Introduction

This chapter introduces the processor and its features. It contains the following sections:
• About the processor on page 1-2
• Compliance on page 1-3
• Features on page 1-4
• Interfaces on page 1-5
• Configurable options on page 1-6
• Test features on page 1-12
• Product documentation, design flow, and architecture on page 1-13
• Changes from previous version on page 1-15.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-1
ID092411 Non-Confidential



Introduction 
1.1 About the processor
The Cortex-R5 processor is a mid-range CPU for use in deeply-embedded, real-time systems. 
It implements the ARMv7-R architecture, and includes Thumb-2 technology for optimum code 
density and processing throughput. The pipeline has a single Arithmetic Logic Unit (ALU), but 
implements limited dual-issuing of instructions for efficient utilization of other resources such 
as the register file. A hardware Accelerator Coherency Port (ACP) is provided to reduce the 
requirement for slow software cache maintenance operations when sharing memory with other 
masters.

Interrupt latency is kept low by interrupting and restarting load-store multiple instructions, and 
by use of a dedicated peripheral port that enables low-latency access to an interrupt controller. 
The processor has Tightly-Coupled Memory (TCM) ports for low-latency and deterministic 
accesses to local RAM, in addition to caches for higher performance to general memory.

Error Checking and Correction (ECC) is used on the Cortex-R5 processor ports and in Level 1 
(L1) memories to provide improved reliability and address safety-critical applications.

Many of the features, including the caches, TCM ports, and ECC are configurable so that a given 
processor implementation can be tailored to the application for efficient area usage.

Figure 1-1 shows the processor in a typical system.

Figure 1-1 Example Cortex-R5 system

DMA

Interrupt 
controllerCortex-R5 processor group Interrupts

Private peripherals

ACP-M AXI-M0 AXI-M1 PPX0 PPX1

Shared peripherals
ROM RAM

AXI-S1AXI-S0ACP-SCoreSight 
debug sub-

system

JTAG
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-2
ID092411 Non-Confidential



Introduction 
1.2 Compliance
The processor implements the ARMv7-R architecture and ARMv7 debug architecture. In 
addition, the Cortex-R5F processor implements the VFPv3-D16 architecture. This includes the 
VFPv3 instruction set.

The Cortex-R5 processor complies with, or implements, the specifications described in:
• ARM architecture
• Trace macrocell
• Advanced Microcontroller Bus Architecture.
• Debug architecture.

This TRM complements architecture reference manuals, architecture specifications, protocol 
specifications, and relevant external standards. It does not duplicate information from these 
sources.

1.2.1 ARM architecture

The Cortex-R5 processor implements the ARMv7-R architecture profile that includes the 
following architecture extensions:

• Advanced Single Instruction Multiple Data (SIMD) architecture extension for integer and 
floating-point vector operations

• Vector Floating-Point version 3 (VFPv3) architecture extension for floating-point 
computation that is fully compliant with the IEEE 754 standard

• Multiprocessing Extensions for multiprocessing functionality.

See the ARM Architecture Reference Manual.

1.2.2 Trace macrocell

The Cortex-R5 processor implements the ETM v3.3 architecture profile. See the CoreSight 
ETM-R5 Technical Reference Manual.

1.2.3 Advanced Microcontroller Bus Architecture

This Cortex-R5 processor complies with the AMBA 3 protocol. See AMBA AXI Protocol 
Specification and AMBA 3 APB Protocol Specification.

1.2.4 Debug architecture

The Cortex-A9 processor implements the ARMv7 Debug architecture that includes support for 
Security Extensions and CoreSight. See the CoreSight Architecture Specification.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-3
ID092411 Non-Confidential



Introduction 
1.3 Features
The features of the processor include:

• an integer unit implementing the ARMv7-R instruction set

• optional and separately licensable Floating Point Unit (FPU) implementing the VFPv3 
instruction set, fully or as single-precision only

• dynamic branch prediction with a global history buffer, and a 4-entry return stack

• an L1 memory system with:
— optional TCM interfaces with optional support for ECC
— optional Harvard caches with optional support for parity or ECC
— optional ARMv7-R architecture Memory Protection Unit (MPU).

• the ability to implement and use redundant CPU logic for fault detection

• an L2 memory interface:
— 64-bit master AXI3 interface for accessing memory and shared peripherals
— optional 64-bit slave AXI3 interface to TCM memories and cache RAM blocks for 

DMA of instructions or data and online RAM test
— 32-bit master AXI3 peripheral interface for accessing local peripherals
— optional 32-bit master AHB peripheral interface for accessing legacy peripherals
— optional ACP for hardware coherency between peripheral data transfers and data 

cache.

• a debug interface to a CoreSight Debug Access Port (DAP)

• a trace interface to a CoreSight ETM-R5

• a Performance Monitoring Unit (PMU)

• low interrupt latency with restartable instructions

• non-maskable interrupt

• a Vectored Interrupt Controller (VIC) port

• option to implement two CPUs within a group, sharing one ACP.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-4
ID092411 Non-Confidential



Introduction 
1.4 Interfaces
The processor has the following interfaces:

• 64-bit AXI-master interfaces, one per CPU, for instruction fetch and data access

• 32-bit AXI and AHB master interfaces, per CPU, for data accesses, particularly to 
peripherals

• 64-bit AXI-slave interfaces, one per CPU, for external access to TCMs and cache RAMs

• TCM interfaces, per CPU, for access to local memory containing instructions and data

• ACP pass through interface, comprising AXI master and slave, up to 64 bits wide, 
providing limited hardware coherency functions

• VIC interfaces, one per CPU, for the connection of a PL192 VIC

• configuration signals for customizing the behavior of the processor, particularly from 
reset

• interrupt and event outputs providing information about the behavior of the processor to 
the wider system

• 32-bit APB slave interfaces and various debug handshake signals, one per CPU, for 
connection to CoreSight components providing debug features

• ETM interfaces, one per CPU, for connection to a CoreSight ETM-R5 providing 
instruction and data trace

• Memory Built-In Self Test (MBIST) interfaces and scan signals, one per CPU, enabling 
test during manufacture of local RAMs and logic.

All the processor AMBA interfaces conform to one of the following AMBA 3 specifications:
• AMBA AXI Protocol Specification
• AMBA AHB-Lite Protocol Specification
• AMBA APB Protocol Specification.

The debug interfaces are CoreSight compliant, see the CoreSight Architecture Specification.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-5
ID092411 Non-Confidential



Introduction 
1.5 Configurable options
Table 1-1 shows the features of the processor that can be configured using either 
build-configuration or pin-configuration. See Product documentation, design flow, and 
architecture on page 1-13 for information about configuration of the processor. Many of these 
features, if included, can also be enabled and disabled during software configuration. In a 
twin-CPU configuration, some of the options can be configured separately for each CPU while 
for other options both CPUs take the same value. Options that permit independent configuration 
are highlighted with footnotes in Table 1-1 and Table 1-2 on page 1-9.

Table 1-1 Configurable options

Feature Options Sub-options Build-configuration 
or pin-configuration

Number of CPUsa Single-CPU (no 
redundancy)

- Build

Redundant CPU - Build

Twin-CPU (no redundancy) - Build

Split/Lock Safety-mode (redundancy)
Performance-mode (twin CPU)

Build and pin

Instruction cache No I-Cacheb - Build

I-Cache includedb No error checking
Parity error checking
64-bit ECC error checking

Build

4KB (4x1KB ways)b

8KB (4x2KB ways)b

16KB (4x4KB ways)b

32KB (4x8KB ways)b

64KB (4x16KB ways)b

Build

Data cache No D-Cacheb - Build

D-Cache includedb No error checkingb

Parity error checking
32-bit ECC error checking

Build

4KB (4x1KB ways)b

8KB (4x2KB ways)b

16KB (4x4KB ways)b

32KB (4x8KB ways)b

64KB (4x16KB ways)b

Build

ATCM No ATCM ports - Build and pin

One ATCM port No error checking
32-bit ECC error checking
64-bit ECC error checking

Build

4KB, 8KB, 16KB, 32KB, 64KB, 
128KB, 256KB, 512KB, 1MB, 2MB, 
4MB, or 8MBb

Pin
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-6
ID092411 Non-Confidential



Introduction 
BTCM No BTCM ports - Build and pin

One BTCM port (B0TCM)b No error checking
32-bit ECC error checking
64-bit ECC error checking

Build and pinc

4KB, 8KB, 16KB, 32KB, 64KB, 
128KB, 256KB, 512KB, 1MB, 2MB, 
4MB, or 8MBb

Pin

Two BTCM ports (B0TCM 
and B1TCM)b

No error checking
32-bit ECC error checking
64-bit ECC error checking

Build and pinc

2x2KB, 2x4KB, 2x8KB, 2x16KB, 
2x32KB, 2x64KB, 2x128KB, 
2x256KB, 2x512KB, 2x1MB, 2x2MB, 
or 2x4MBb

Pin

Interleaved on 64-bit granularity in 
memoryb

Adjacent in memoryb

Pin

Instruction endianness Little-endian - Build

Pin-configured Little-endian
Big-endian

Pin

Floating point (VFP) No FPUb - Build

FPU includedbd Full implementation
Single-precision only

MPU No MPUb - Build

MPU includedb 12 MPU regionsb

16 MPU regionsb

Build

TCM bus parity No TCM address and control 
bus parity

- Build

TCM address and control 
bus parity generated

-

AXI bus ECC/parity on 
AXI-master, AXI-slave (if 
included) and ACP (if 
included)

No AXI bus ECC/parity - Build

AXI bus ECC/parity 
generated/ checked

-

Bus ECC/parity on AXI 
peripheral port and AHB 
peripheral port (if included)

No peripheral port bus 
ECC/parity

- Build

Peripheral port bus 
ECC/parity 
generated/checked

-

Breakpoints 2-8 breakpoint register pairs - Build

Table 1-1 Configurable options (continued)

Feature Options Sub-options Build-configuration 
or pin-configuration
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-7
ID092411 Non-Confidential



Introduction 
Watchpoints 1-8 watchpoint registers - Build

ATCM at reset Disabledb - Pin

Enabledb e Base address 0x0b

Base address configuredb

Build and pin

BTCM at reset Disabledb - Pin

Enabledbe Base address configuredb

Base address 0x0bf

Build and pin

Peripheral ID RevAnd field Any 4-bit value - Build

AXI slave interface No AXI-slaveb - Build

AXI-slave includedb -

TCM Hard Error Cache No TCM Hard Error Cache - Build

TCM Hard Error Cache 
included g

-

Non-Maskable FIQ Interrupt Disabled (FIQ can be 
masked by software)

- Pin

Enabled -

Parity typeh Odd parity - Pin

Even parity -

AXI coherency port (ACP) No ACP - Build

ACP included -

AHB peripheral port AXI peripheral port only - Build

AXI and AHB peripheral 
ports

AHB peripheral port region size: 4KB, 
8KB, 16KB, 32KB, 64KB, 128KB, 
256KB, 512KB, 1MB, 2MB, 4MB, or 
8MB. 16MB, 32MB, 64MB, 128MB, 
256MB, 512MB, 1GB, 2GB, 4GBb

Build and pin

AHB peripheral port base address: any 
size-aligned addressb

AXI peripheral interface 
region size

4KB, 8KB, 16KB, 32KB, 
64KB, 128KB, 256KB, 
512KB, 1MB, 2MB, 4MB, 
or 8MB. 16MB, 32MB, 
64MB, 128MB, 256MB, 
512MB, 1GB, 2GB, 4GBb

- Pin

AXI peripheral interface base 
address

Any size-aligned addressb - Pin

Table 1-1 Configurable options (continued)

Feature Options Sub-options Build-configuration 
or pin-configuration
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-8
ID092411 Non-Confidential



Introduction 
Table 1-2 describes the various features that can be pin-configured to be either enabled or 
disabled at reset. It also shows which CP15 register field provides software configuration of the 
feature when the processor is out of reset. All of these fields exist in either the SCTLR, or one 
of the auxiliary control registers.

Virtual AXI peripheral 
interface region size

4KB, 8KB, 16KB, 32KB, 
64KB, 128KB, 256KB, 
512KB, 1MB, 2MB, 4MB, 
or 8MB. 16MB, 32MB, 
64MB, 128MB, 256MB, 
512MB, 1GB, 2GB, 4GBb

- Pin

Virtual AXI peripheral 
interface base address

Any size-aligned addressb - Pin

Cortex-R5 group ID Any 4-bit value - Pin

a. See CPU configurations on page 1-10 for more information.
b. This option, or some aspects of it, can be configured separately for each CPU on a twin-CPU build.
c. The error scheme is a build option only. The number of BTCM ports (none, one, two) is set by both build and pin configuration.
d. Only available with the Cortex-R5F processor.
e. Only if the relevant TCM port(s) are included.
f. The BTCM base address must be size aligned, to the total size of B0TCM + B1TCM.
g. Only if at least one TCM port is included and uses ECC error checking.
h. Only relevant if one of the caches includes parity checking, or AXI bus ECC or TCM bus parity is included.

Table 1-1 Configurable options (continued)

Feature Options Sub-options Build-configuration 
or pin-configuration

Table 1-2 Configurable options at reset

Feature Options Register field

Exception endianness Little-endian/big-endian data for exception handling SCTLR.EE

Exception state ARM/Thumb state for exception handling SCTLR.TE

Exception vector table Base address for exception vectors: 0x00000000/0xFFFF0000a SCTLR.V

TCM error checking ATCM ECC check enableab ACTLR.ATCMPCEN

BTCM ECC check enabled, for B0TCM and B1TCM togetherab ACTLR.B0TCMPCEN/ 
ACTLR.B1TCMPCEN

TCM external errors ATCM external error enablea ACTLR.ATCMECEN

BTCM external error enable, for B0TCM and B1TCM independently ACTLR.B0TCMECEN/ 
ACTLR.B1TCMECEN

TCM load/store-64 
(read-modify-write) behavior

ATCM load/store-64 enableac ACTLR2.ATCMRMW

BTCM load/store-64 enableac ACTLR2.BTCMRMW

AXI peripheral interface Region enablea PPX.En

AHB peripheral interfaced Region enablea PPH.En

a. This can be configured separately for each CPU on a twin-CPU build.
b. Can only be enabled if the appropriate TCM is configured with the appropriate error checking scheme, and the appropriate number of 

ports
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-9
ID092411 Non-Confidential



Introduction 
1.5.1 CPU configurations

A Cortex-R5 processor group can consist of either one or two CPUs. The number of CPUs 
included and the behavior of these CPUs within the group depends on the configuration used. 
This section describes the CPU arrangements supported and the functionality of each 
arrangement. 

Single CPU

This configuration includes a single CPU.

Twin CPU

This configuration includes two individual and decoupled CPUs, and a single, optional ACP. It 
offers higher performance than a standard single CPU configuration. Each CPU has its own 
cache RAMs, debug logic and bus interfaces to the rest of the SoC. There is only one ACP port 
in the group. Accesses on this port are kept coherent with both CPUs in the group. For more 
information about ACP coherency, see Accelerator Coherency Port interface on page 9-53. The 
CPUs do not interact within the processor group boundary but might interact elsewhere in the 
SoC. Contact your system integrator for more information about programming a device that 
includes a twin-CPU configuration. 

You can configure some aspects of the two CPUs separately, for example cache size. See 
Table 1-1 on page 1-6 for more information about which configuration options can be 
configured independently.

There is no internal hardware to maintain coherency between the two CPUs in a twin CPU 
Cortex-R5 group. Loss of coherency occurs if one CPU tries to access dirty data that is in the 
cache of the other CPU. For example, if CPU0 attempts to transfer a frame of data to CPU1, 
using a write-back cacheable memory region, then the frame valid bit might miss in the CPU0 
cache and be updated in level-2 memory, while some or all of the frame data can hit in the CPU0 
cache and not be updated in level-2 memory. This represents a loss of coherency, because CPU1 
can detect a valid frame but reads out-of-date frame data. For more information about 
coherency, see Coherency on page 3-6.

Redundant CPU

In this configuration, there is a single functional CPU and an optional ACP. The configuration 
also includes a second redundant copy of the majority of the CPU logic, and a redundant copy 
of the ACP logic if an ACP is configured. The redundant logic is driven by the same inputs as 
the functional logic. In particular, the redundant CPU logic shares the same cache RAMs as the 
functional CPU. Therefore only one set of cache RAMs is required. The redundant logic 
operates in lock-step with the CPU, but does not directly affect the processor behavior in any 
way. The processor outputs to the rest of the system, and the CPU outputs to the cache RAMs, 
are driven exclusively by the functional CPU.

Comparison logic can be included, during implementation, to compare the outputs of the 
redundant logic and the functional logic. These comparators can detect a single fault that occurs 
in either set of logic because of radiation or circuit failure. When used in conjunction with RAM 
error detection schemes, the system can be protected from faults.

The input signals DCCMINP[7:0] and DCCMINP2[7:0] and the output signals 
DCCMOUT[7:0] and DCCMOUT2[7:0] enable the comparators to communicate with the rest 
of the SoC. 

c. Can only be enabled if the appropriate TCM is not configured with 32-bit ECC.
d. Can only be enabled if the AHB peripheral port is included.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-10
ID092411 Non-Confidential



Introduction 
ARM provides example comparison logic, but you can change this during implementation. If 
you are implementing a Redundant CPU configuration, contact ARM for more information.

Split/Lock

Two CPUs are included in this configuration. If an ACP is configured, a functional ACP and a 
redundant copy of the ACP logic is included. The processor group can operate in one of two 
modes:

Split mode Operates as a twin-CPU configuration. Also known as performance mode.

Locked mode Operates as a redundant CPU configuration. Also known as safety mode.

Switching between these modes is only permitted while the processor group is held in power-on 
reset. The input signals SLCLAMP and SLSPLIT are provided to enable the system to control 
the mode of the processor group. For more information about how to effect a change in 
processor mode, contact your system integrator.

If you are implementing a Split/Lock configuration, contact ARM for more information.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-11
ID092411 Non-Confidential



Introduction 
1.6 Test features
The processor is delivered as fully-synthesizable RTL and is a fully-static design. Scan-chains 
and test wrappers for production test can be inserted into the design by the synthesis tools during 
implementation. See the relevant reference methodology documentation for more information.

If the AXI-slave interface is included, production test of the processor cache and TCM RAMs 
can be done through the dedicated, pipelined MBIST interface. This interface shares some of 
the multiplexing present in the processor design. 

In addition, you can use the AXI slave interface to read and write the cache RAMs and TCM. 
You can use this feature to test the cache RAMs in a running system. This might be required in 
a safety-critical system. The TCM can be read and written directly by the program running on 
the processor. You can also use the AXI slave interface for swapping a test program in to the 
TCMs for the processor to execute. See Accessing RAMs using the AXI slave interface on 
page 9-25 for more information about how to access the RAMs using the AXI slave interface.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-12
ID092411 Non-Confidential



Introduction 
1.7 Product documentation, design flow, and architecture
This section describes the Cortex-R5 processor books and how they relate to the design flow in:
• Documentation
• Design flow.

See Additional reading on page xi for more information about the books described in this 
section. For information about the relevant architectural standards and protocols, see 
Compliance on page 1-3.

1.7.1 Documentation

The Cortex-R5 processor documentation is as follows:

Technical Reference Manual 
The Technical Reference Manual (TRM) describes the functionality and the 
effects of functional options on the behavior of the Cortex-R5 processor. It is 
required at all stages of the design flow. The choices made in the design flow can 
mean that some behavior described in the TRM is not relevant. If you are 
programming the Cortex-R5 processor then contact:
• the implementer to determine the build configuration of the implementation
• the integrator to determine the pin configuration of the device that you are 

using.

Configuration and Sign-off Guide 
The Configuration and Sign-off Guide (CSG) describes:
• the available build configuration options and related issues in selecting 

them
• how to configure the Register Transfer Level (RTL) source files with the 

build configuration options
• the processes to sign off the configured design.
The ARM product deliverables include reference scripts and information about 
using them to implement your design. Reference methodology flows supplied by 
ARM are example reference implementations. Contact your EDA vendor for 
EDA tool support.
The CSG is a confidential book that is only available to licensees.

Integration Manual 
The Integration Manual (IM) describes how to integrate the Cortex-R5 processor 
into a SoC. It describes the pins that the integrator must tie off to configure the 
macrocell for the required integration. Some of the integration is affected by the 
configuration options used when implementing the Cortex-R5 processor.
The IM is a confidential book that is only available to licensees.

1.7.2 Design flow

The Cortex-R5 processor is delivered as synthesizable RTL. Before it can be used in a product, 
it must go through the following process:

Implementation 
The implementer configures and synthesizes the RTL to produce a hard 
macrocell. This might include integrating RAMs into the design.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-13
ID092411 Non-Confidential



Introduction 
Integration The integrator connects the implemented design into a SoC. This includes 
connecting it to a memory system and peripherals.

Programming 
This is the last process. The system programmer develops the software required 
to configure and initialize the Cortex-R5 processor, and tests the required 
application software.

Each process can be performed by a different party. Implementation and integration choices 
affect the behavior and features of the Cortex-R5 processor. The implementer can implement a 
macrocell that includes some of the SoC components in addition to the Cortex-R5 processor. In 
this situation, they must perform some of the integration before implementation. The integrator 
of such a macrocell has fewer integration tasks to perform, and fewer option choices to make.

The operation of the final device depends on:

Build configuration 
The implementer chooses the options that affect how the RTL source files are 
pre-processed. These options usually include or exclude logic that affects one or 
more of the area, maximum frequency, and features of the resulting macrocell.
For example, the BTCM interface can be configured to have zero, one (B0TCM) 
or two (B0TCM and B1TCM) ports. If one port is chosen, the logic for the second 
port is excluded from the macrocell, although the pins remain, and the second port 
(B1TCM) cannot be used on that macrocell.

Configuration inputs 
The integrator configures some features of the Cortex-R5 processor by tying 
inputs to specific values. These configurations affect the start-up behavior before 
any software configuration is made. They can also limit the options available to 
the software.
For example, if the build configuration for the macrocell includes both BTCM 
ports, the integrator can choose how many ports to actually use, and therefore 
how many RAMs must be integrated with the macrocell. If the integrator only 
wants to use one BTCM port, they can connect RAM to the B0TCM port only, 
and tie the ENTCM1IFm input to zero to indicate that the B1TCM is not 
available.

Software configuration 
The programmer configures the Cortex-R5 processor by programming particular 
values into registers. This affects the behavior of the Cortex-R5 processor. 
For example, the enable bit in the BTCM Region Register controls whether or not 
memory accesses are performed to the BTCM interface. However, the BTCM 
cannot, and must not, be enabled if the build configuration does not include any 
BTCM ports, or if the pin configuration indicates that no RAMs have been 
integrated onto the BTCM ports.

Note
 This manual refers to implementation-defined features that are applicable to build configuration 
options. Reference to a feature that is included means that the appropriate build and pin 
configuration options are selected. Reference to an enabled feature means one that has also been 
configured by software.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-14
ID092411 Non-Confidential



Introduction 
1.8 Changes from previous version
This section describes the differences in functionality between product revisions:

r0p0 First release. 

r0p0-r1p0 Functional changes are:
• Adds option for single-precision only floating point support, in addition to 

existing double-and-single-precision support.
— Configurable options. See Table 1-1 on page 1-6.
— FLOAT_PRECISION bit in Build Options 1 register. See c15, Build 

Options 1 Register on page 4-79.
— VFP instructions undefined in single-precision. See VFP instructions 

in a single-precision configuration on page 11-2.
— Change to MVFR0 register to indicate double and single-precision 

support. See Table 11-7 on page 11-10.
• Changes the behavior of the AXI slave port for instruction and data cache 

accesses. See Cache RAM access on page 9-27.
• Adds the V7A&R MP extensions. See: 

— c0, Multiprocessor Affinity Register on page 4-18
— c0, Cache Level ID Register on page 4-36

• SCTLR enables SWP and SWPB to be Undefined. See Table 4-24 on 
page 4-39.

• Adds support for the ARM UDIV and SDIV instructions. See Instruction 
Set Attributes Registers on page 4-27

• Adds ID values for r1p0. See MIDR bit assignments on page 4-15.

r1p0-r1p1 Functional changes are:
• Adds ID values for r1p1. See MIDR bit assignments on page 4-15.

r1p1-r1p2 Functional changes are:
• Adds ID values for r1p2. See MIDR bit assignments on page 4-15.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 1-15
ID092411 Non-Confidential



Chapter 2 
Functional Description

This chapter describes the functionality of the Cortex-R5 processor. It contains the following 
sections:
• About the functions on page 2-2
• Interfaces on page 2-10
• Clocking and resets on page 2-12
• Operation on page 2-18.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-1
ID092411 Non-Confidential



Functional Description 
2.1 About the functions
Figure 2-1 shows the structure of the processor. Figure 2-2 shows the structure of a CPU within 
the processor

Figure 2-1 Processor block diagram

Figure 2-2 CPU block diagram

The PreFetch Unit (PFU) fetches instructions from the memory system, predicts branches, and 
passes instructions to the Data Processing Unit (DPU). The DPU executes all instructions and 
uses the Load/Store Unit (LSU) for data memory transfers. The PFU and LSU interface to the 
L1 memory system that contains L1 instruction and data caches and the TCM interfaces. The 
L1 caches in turn connect to the L2 memory system, and the LSU has a more direct connection 
to the L2 memory system by means of the peripheral port. The L1 data cache interfaces to the 
µSCU to perform cache maintenance as required for coherency with ACP transactions.

Processor

CPU0 CPU1
μSCU

CPU

Level two interface

Level one
                                 memory system

AXI master bus

L2 interface 
AXI

master port

Data 
Processing 

Unit

Memory 
Protection 

Unit

Prefetch Unit Load/Store 
Unit

L2 interface 
AXI

slave port

Tightly-
Coupled 
Memory 
(TCM)

interfaceB0TCM

B1TCM

ATCM

L1
instruction 

cache control

L1
instruction 

cache RAM

L1
data cache 

control

L1
data

 cache RAM

Debug

Debug
interface

ETM

ETM
interface

FPU

AXI slave bus

P
Port

AXI

AHB

μSCU
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-2
ID092411 Non-Confidential



Functional Description 
This section describes the main components of the processor:
• Data Processing Unit
• Load/Store Unit
• PreFetch Unit
• L1 memory system
• L2 AXI interfaces on page 2-5
• Dual-redundant core on page 2-6
• Split/lock on page 2-6
• Hard error features on page 2-6
• Debug on page 2-6
• System control coprocessor on page 2-7
• Interrupt handling on page 2-7
• Power management on page 2-8

2.1.1 Data Processing Unit

The DPU holds most of the program-visible state of the processor, such as general-purpose 
registers, status registers and control registers. It decodes and executes instructions, operating 
on data held in the registers in accordance with the ARM architecture. Instructions are fed to the 
DPU from the PFU through a buffer. The DPU performs instructions that require data to be 
transferred to or from the memory system by interfacing to the LSU. See Chapter 3 
Programmers Model for more information.

Floating Point Unit

The Floating Point Unit (FPU) is an optional part of the DPU that includes the VFP register file 
and status registers. It performs floating-point operations on the data held in the VFP register 
file. See Chapter 11 FPU Programmers Model for more information.

2.1.2 Load/Store Unit

The LSU manages all load and store operations, interfacing with the DPU to the TCMs, caches, 
peripheral ports, and L2 memory interfaces.

2.1.3 PreFetch Unit

The PFU obtains instructions from the instruction cache, the TCMs, or from external memory 
and predicts the outcome of branches in the instruction stream. See Chapter 5 Prefetch Unit for 
more information.

Branch prediction

The branch predictor is a global type that uses history registers and a 256-entry pattern history 
table.

Return stack

The PFU includes a 4-entry return stack to accelerate returns from procedure calls. 

2.1.4 L1 memory system

The processor L1 memory system includes the following features:
• separate instruction and data caches
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-3
ID092411 Non-Confidential



Functional Description 
• flexible TCM interfaces
• 64-bit datapaths throughout the memory system
• MPU that supports configurable memory region sizes
• export of memory attributes for L2 memory system
• parity or ECC supported on local memories.

For more information of the blocks in the L1 memory system, see:
• Instruction and data caches
• Memory Protection Unit
• TCM interfaces
• Error correction and detection on page 2-5.

Instruction and data caches

You can configure the processor to include separate instruction and data caches. The caches 
have the following features:

• Support for independent configuration of the instruction and data cache sizes between 
4KB and 64KB.

• Pseudo-random cache replacement policy.

• 8-word cache line length. Cache lines can be either write-back or write-through, 
determined by MPU region.

• Ability to disable each cache independently.

• Streaming of sequential data from LDM and LDRD operations, and sequential instruction 
fetches.

• Critical word first filling of the cache on a cache miss.

• Implementation of all the cache RAM blocks and the associated tag and valid RAM 
blocks using standard ASIC RAM compilers.

Memory Protection Unit

An optional MPU provides memory attributes for embedded control applications. You can 
configure the MPU to have eight or twelve regions, each with a minimum resolution of 32 bytes. 
MPU regions can overlap, and the highest numbered region has the highest priority.

The MPU checks for protection and memory attributes, and some of these can be passed to an 
external L2 memory system. 

For more information, see Chapter 7 Memory Protection Unit.

TCM interfaces

Because some applications do not cache well, there are two TCM interfaces that permit 
connection to configurable memory blocks of Tightly-Coupled Memory (ATCM and BTCM). 
These ensure high-speed access to code or data. As an option, the BTCM can have two memory 
ports for increased bandwidth.

An ATCM typically holds interrupt or exception code that must be accessed at high speed, 
without any potential delay resulting from a cache miss.

A BTCM typically holds a block of data for intensive processing, such as audio or video 
processing.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-4
ID092411 Non-Confidential



Functional Description 
The TCMs are external to the processor. This provides flexibility in optimizing the TCM 
subsystem for performance, power, and RAM type. The INITRAMAm and INITRAMBm 
pins enable booting from the ATCM or BTCM, respectively. Both the ATCM and BTCM 
support wait states. 

For more information, see Chapter 8 Level One Memory System.

Error correction and detection

To increase the tolerance of the system to soft memory faults, you can configure the caches for 
either:
• parity generation and error correction/detection
• ECC code generation, single-bit error correction, and two-bit error detection.

Similarly, you can configure the TCM interfaces for ECC code generation, single-bit error 
correction, and two-bit error detection.

For more information, see Chapter 8 Level One Memory System.

2.1.5 L2 AXI interfaces

The L2 AXI interfaces enable the L1 memory system to have access to peripherals and to 
external memory using an AXI master and AXI slave port and the peripheral ports. See 
Chapter 9 Level Two Interface for more information.

AXI master interface

The AXI master interface provides a high bandwidth interface to second level caches, on-chip 
RAM, peripherals, and interfaces to external memory. It consists of a single AXI port with a 
64-bit read channel and a 64-bit write channel for instruction and data fetches.

The AXI master can run at the same frequency as the processor, or at a lower synchronous 
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

AXI slave interface

The AXI slave interface enables AXI masters, including the AXI master port of the processor, 
to access data and instruction cache RAMs and TCMs on the AXI system bus. You can use this 
for DMA into and out of the TCM RAMs and for software test of the TCM and cache RAMs.

The slave interface can run at the same frequency as the processor or at a lower, synchronous 
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

Bits in the Auxiliary Control Register and Slave Port Control Register can control access to the 
AXI slave. Access to the TCM RAMs can be granted to any master, to only privileged masters, 
or completely disabled. Access to the cache RAMs can be separately controlled in a similar way.

Peripheral interfaces

The peripheral interfaces provide low latency interfaces to on-chip RAM and peripherals for 
non-cached data accesses only. They consist of a single 32-bit AXI port, accessed through two 
interfaces, and a single 32-bit AHB port accessed through a single interface.

The peripheral interfaces can run at the same frequency as the processor, or at a lower 
synchronous frequency. If asynchronous clocking is required, an external asynchronous AXI 
slice and asynchronous AHB bridge is required.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-5
ID092411 Non-Confidential



Functional Description 
2.1.6 Dual-redundant core

The processor can be implemented with a second, redundant copy of most of the logic. This 
second core shares the input pins and the cache RAMs of the master core, so only one set of 
cache RAMs is required. The master core drives the output pins and the cache RAMs.

Comparison logic can be included during implementation that compares the outputs of the 
redundant core with those of the master core. If a fault occurs in the logic of either core, because 
of radiation or circuit failure, this is detected by the comparison logic. Used in conjunction with 
the RAM error detection schemes, this can help protect the system from faults. The inputs 
DCCMINP[7:0] and DCCMINP2[7:0] and the outputs DCCMOUT[7:0] and 
DCCMOUT2[7:0] enable the comparison logic inside the processor to communicate with the 
rest of the system.

ARM provides example comparison logic, but you can change this during implementation. If 
you are implementing a processor with dual-redundant cores, contact ARM for more 
information. If you are integrating a Cortex-R5 macrocell with dual-redundant cores, contact the 
implementer for more information.

2.1.7 Split/lock

The Cortex-R5 processor can be configured so that it can be switched, under reset, between a 
twin-CPU performance mode and a dual-redundant safety mode. This feature imposes extra 
constraints on the software usage model. Contact ARM for information on how it can be used.

2.1.8 Hard error features

The error correction features of the processor are targeted at soft errors. The processor contains 
features that enable it to recover from a limited set of hard errors. Contact ARM for information 
on hard error effects and these features.

2.1.9 Debug

Each CPU has a CoreSight compliant Advanced Peripheral Bus version 3 (APBv3) debug 
interface. This permits system access to debug resources, for example, the setting of 
watchpoints and breakpoints.

The processor provides extensive support for real-time debug and performance profiling.

The following sections give an overview of debug:
• System performance monitoring
• ETM interface
• Real-time debug facilities on page 2-7.

System performance monitoring

This is a group of counters that you can configure to monitor the operation of the processor and 
memory system. For more information, see About the PMU on page 6-6.

ETM interface

The Embedded Trace Macrocell (ETM) interface enables you to connect an external ETM unit 
to the processor for real-time code tracing of the core in an embedded system.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-6
ID092411 Non-Confidential



Functional Description 
The ETM interface collects various processor signals and drives these signals from the 
processor. The interface is unidirectional and runs at the full speed of the processor. The ETM 
interface connects directly to the external ETM unit without any additional glue logic. You can 
disable the ETM interface for power saving. For more information, see the CoreSight ETM-R5 
Technical Reference Manual.

Real-time debug facilities

Each CPU contains an EmbeddedICE logic unit to provide real-time debug facilities. It has:
• up to eight breakpoints
• up to eight watchpoints
• a Debug Communications Channel (DCC).

Note
 The number of breakpoints and watchpoints is configured during implementation, see 
Configurable options on page 1-6.

The EmbeddedICE logic monitors the internal address and data buses. You access the 
EmbeddedICE logic through the memory-mapped APB interface.

The processor implements the ARMv7 Debug architecture, including the extensions of the 
architecture to support CoreSight.

See Chapter 12 Debug for more information on debug.

The EmbeddedICE logic supports two modes of debug operation:

Halt mode On a debug event, such as a breakpoint or watchpoint, the debug logic stops the 
processor and forces it into debug state. This enables you to examine the internal 
state of the processor, and the external state of the system, independently from 
other system activity. When the debugging process completes, the processor and 
system state are restored, and normal program execution resumes.

Monitor debug mode 
On a debug event, the processor generates a debug exception instead of entering 
debug state, as in halt mode. The exception entry enables a debug monitor 
program to debug the processor while enabling critical interrupt service routines 
to operate on the processor. The debug monitor program can communicate with 
the debug host over the DCC or any other communications interface in the 
system. 

2.1.10 System control coprocessor

The system control coprocessor provides configuration and control of the memory system and 
its associated functionality. Other system-level operations, such as cache maintenance 
operations, are also managed through the system control coprocessor. 

For more information, see System control and configuration on page 4-2. 

2.1.11 Interrupt handling

Interrupt handling in the processor is compatible with previous ARM architectures, but has 
several additional features to improve interrupt performance for real-time applications.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-7
ID092411 Non-Confidential



Functional Description 
VIC port

The core has a dedicated port that enables an external interrupt controller, such as the ARM 
PrimeCell Vectored Interrupt Controller (VIC), to supply a vector address along with an 
Interrupt Request (IRQ) signal. This provides faster interrupt entry, but you can disable it for 
compatibility with earlier interrupt controllers.

Note
 If you do not have a VIC in your design, you must ensure the nIRQm and nFIQm signals are 
asserted, held LOW, and remain LOW until the exception handler clears them.

Low interrupt latency

On receipt of an interrupt, the processor abandons any pending restartable memory operations. 
Restartable memory operations are the multiword transfer instructions LDM, LDRD, STRD, STM, PUSH, 
and POP that can access Normal memory.

To minimize the interrupt latency, ARM recommends that you do not perform:
• multiple accesses to areas of memory marked as Device or Strongly Ordered
• SWP operations to slow areas of memory.

Exception processing

The ARMv7-R architecture contains exception processing instructions to reduce interrupt 
handler entry and exit time:
SRS Save return state to a specified stack frame.
RFE Return from exception using data from the stack.
CPS Change processor state, such as interrupt mask setting and clearing, and mode 

changes.

2.1.12 Power management

The processor includes several microarchitectural features to reduce energy consumption:

• Accurate branch and return prediction, reducing the number of incorrect instruction fetch 
and decode operations.

• The caches use sequential access information to reduce the number of accesses to the tag 
RAMs and to unmatched data RAMs.

• Extensive use of gated clocks and gates to disable inputs to unused functional blocks. 
Because of this, only the logic actively in use to perform a calculation consumes any 
dynamic power. 

Each CPU supports four levels of power management:

Run mode This mode is the normal mode of operation where all of the functionality 
of the CPU is available. 

Standby mode This mode disables most of the clocks of the CPU, while keeping the 
device powered up. This reduces the power drawn to the static leakage 
current and the minimal clock power overhead required to enable the 
device to wake up from the Standby mode.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-8
ID092411 Non-Confidential



Functional Description 
Dormant mode The processor can be implemented in such a way as to support Dormant 
mode. Dormant mode is a power saving mode in which the CPU logic, but 
not the TCM and cache RAMs, is powered down. The CPU state, apart 
from the cache and TCM state, is stored to memory before entry into 
Dormant mode, and restored after exit. 
Contact ARM for more information on preparing the Cortex-R5 processor 
to support Dormant mode.

Shutdown mode This mode has the entire CPU powered down. All state, including cache 
and TCM state, must be saved externally. After power-up, the assertion of 
reset returns the CPU to the run state.

For more information on the power management features, see Chapter 10 Power Control.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-9
ID092411 Non-Confidential



Functional Description 
2.2 Interfaces
The processor has the following interfaces for external access:
• AXI master interface
• Peripheral interfaces
• AXI slave interface
• TCM interfaces
• ACP interface
• Interrupt and VIC interface
• Configuration interface
• Interrupt and event outputs on page 2-11
• APB Debug interface on page 2-11
• ETM interface on page 2-11
• Test interface on page 2-11.

2.2.1 AXI master interface

AXI master interface on page 9-5 describes the AXI master interface. AXI master port on 
page A-9 and AXI master port error detection signals on page A-11 describe the associated 
signals. The AMBA AXI Protocol Specification describes the AXI protocol.

2.2.2 Peripheral interfaces

Peripheral interfaces on page 9-36 describes the peripheral interfaces. AXI peripheral port on 
page A-18 to AHB peripheral port error detection signals on page A-21 describe the associated 
signals. The AMBA AXI Protocol Specification and the AMBA 3 AHB-Lite Protocol 
Specification describe the AXI and AHB-Lite protocols respectively.

2.2.3 AXI slave interface

AXI slave interface on page 9-21 describes the AXI slave interface. AXI slave port on page A-12 
and AXI slave port error detection signals on page A-14 describe the associated signals. The 
AMBA AXI Protocol Specification describes the AXI protocol.

2.2.4 TCM interfaces

About the TCMs on page 8-13 describes the TCM interfaces. TCM interface signals on 
page A-22 describes the associated signals. 

2.2.5 ACP interface

Accelerator Coherency Port interface on page 9-53 describes the ACP interface. ACP slave port 
on page A-15 to ACP master port error detection signals on page A-17 describe the associated 
signals. The AMBA AXI Protocol Specification describes the AXI protocol.

2.2.6 Interrupt and VIC interface

Interrupts on page 3-19 describes the interrupts. Interrupt signals, including VIC interface 
signals on page A-8 describes the associated signals. 

2.2.7 Configuration interface

Configuration signals on page A-4 describes the configuration signals.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-10
ID092411 Non-Confidential



Functional Description 
2.2.8 Interrupt and event outputs

Chapter 6 Events and Performance Monitor describes events and the interrupts they can 
generate. Exceptions on page 11-14 describes the FPU exception outputs. Interrupt signals, 
including VIC interface signals on page A-8, ETM interface signals on page A-28, Validation 
signals on page A-31, and FPU signals on page A-32 describe the associated signals.

2.2.9 APB Debug interface

AMBA APBv3 is used for debugging purposes. CoreSight is the ARM architecture for 
multi-processor trace and debug. CoreSight defines what debug and trace components are 
required and how they are connected. See the CoreSight Architecture Specification for more 
information. Debug interface signals on page A-26 describes the debug APB interface signals.

Note
 The APB debug interface can also connect to a DAP-Lite. For more information on the 
DAP-Lite, see the CoreSight DAP-Lite Technical Reference Manual.

2.2.10 ETM interface

You can connect an ETM-R5 to the processor through the ETM interface. The ETM-R5 
provides instruction and data trace for the processor. The CoreSight ETM-R5 Technical 
Reference Manual describes how the ETM-R5 connects to the processor.

The ETM interface includes these signals:
• an instruction interface
• a data interface
• an event interface
• other connections to the ETM.

ETM interface signals on page A-28 describes the associated signals. Event bus interface on 
page 6-20 describes the event bus.

2.2.11 Test interface

The test interface provides support for test during manufacture of the processor using Memory 
Built-In Self Test (MBIST). MBIST signals on page A-30 describes the test interface signals. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-11
ID092411 Non-Confidential



Functional Description 
2.3 Clocking and resets
Before you can run application software on the processor, it must be reset and initialized, 
including loading the appropriate software-configuration. This section describes the signals for 
clocking and resetting the processor. It contains the following sections:
• Resets
• Reset modes on page 2-13
• Clocking on page 2-16.

See Initialization on page 2-18 for information on software initialization.

2.3.1 Resets

Each Cortex-R5 CPU has the following inputs:

nRESETm  Main CPU reset. Resets the non-debug CPU logic.

DBGRESETmn CPU debug reset. Resets core-domain debug logic. This includes 
breakpoints, watchpoints and the DCC registers.

PRESETDBGmn CPU debug reset. Resets debug-domain debug logic and the APB interface 
of the CPU.

Note
 • For more information about the split between core-domain and debug-domain logic, see 

the ARM Architecture Reference Manual.

•  Cortex-R5 implements separate core and debug domains with the minimal architected set 
of debug domain registers.

The Cortex-R5 processor group, containing one or two CPUs, has the following resets:

ACPRESETn ACP reset. Resets the ACP logic and both the ACP slave and master AXI 
interfaces.

nSYSPORESET Power-on reset. Resets the entire processor group including all 
implemented CPUs, debug logic and ACP. See Effects of resets on debug 
registers on page 12-8.

The following input is related to the reset functionality:

nCPUHALTm This signal, when asserted, stops the CPU from fetching instructions out 
of reset.

All these signals are active-LOW and are suitably synchronized within the processor. You must 
take care when generating these reset signals, for example, to ensure that they are glitch-free.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-12
ID092411 Non-Confidential



Functional Description 
2.3.2 Reset modes

The reset signals in the processor enable you to reset different parts of the design independently. 
Table 2-1 shows the reset signals, and the combinations and possible applications that you can 
use them in.

All reset signals are synchronized within the processor. You do not have to synchronize either 
edge of any of the reset signals. Unless otherwise stated, whenever nRESETm is asserted, it 
must be held asserted for at least four CLKIN cycles to ensure correct reset operation.

Note
 If you are implementing either a dual-redundant core or a Split/Lock configuration, contact 
ARM for additional reset requirements.

This section of the manual describes:
• Power-on reset
• CPU reset on page 2-14
• Normal operation on page 2-15
• Halt operation on page 2-15.

Power-on reset

You must apply power-on or cold reset to the processor when power is first applied to the 
system. A power-on reset must consist of one of the following:

• Assert nSYSPORESET and keep it asserted for at least four CLKIN cycles. See 
Figure 2-3 on page 2-14.

Table 2-1 Reset modes

Reset 
mode nRESETm DBG

RESETmn
PRESET
DBGmn

ACP
RESETn

nSYSPO
RESET

nCPU
HALTm Application

Power-on 
reset

0/x x x x 0 x Power-up reset, full-system reset. 
Hard or cold reset.

CPU reset 0 1 1 x 1 x Watchdog reset, soft reset or warm 
reset. Debug logic remains active to 
permit debugging through reset.

CPU 
power-up 
reset

0 0 1 x 1 x Reset of CPU, on wake-up from 
dormant or shutdown modes.

Debug 
reset

x 0 0 x 1 x Debugger and debug system reset.

ACP reset x x x 0 1 x Coherent peripheral reset.

Normal 1 1 1 1 1 1 Normal run mode.

Halt 1 1 1 1 1 0 Halt mode with CPU not fetching 
instructions, provided normal mode 
has not been entered since last reset
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-13
ID092411 Non-Confidential



Functional Description 
Figure 2-3 Power-on Reset

• Assert nSYSPORESET and nRESETm together, holding nRESETm asserted for at 
least four CLKIN cycles. See Figure 2-4.

Figure 2-4 Power-on reset

The processor implements synchronizers for nSYSPORESET. You do not have to synchronize 
either edge of nSYSPORESET. 

After applying power-up reset to the processor, you must initialize various registers. See 
Initialization on page 2-18 for more information.

CPU reset

A CPU or warm reset initializes the majority of the CPU logic, excluding the ACP and debug 
logic. Typically, you use CPU reset to reset a system that has been operating for some time, for 
example when a watchdog timer expires. The processor debug logic remains active, to permit 
debugging of the reset handling software.

You can safely reset either or both of the CPUs independently of the ACP.

It you are implementing a twin-CPU configuration you must ensure that a given CPU is 
quiescent before resetting it independently of the other CPU. A CPU is quiescent when all of 
the following are true:
• either nWFEPIPESTOPPEDm or nWFIPIPESTOPPEDm is LOW
• all transactions to the CPU from the system have completed
• the system cannot issue new stimulus to the CPU.

CPU power-up reset

You must apply a CPU power-up reset when the processor wakes up from either dormant or 
shutdown mode. A CPU power-up reset must consist of the following:

• Assert nRESETm and DBGRESETnm together and keep them asserted for at least four 
CLKIN cycles on wake-up from dormant or shutdown mode.

• Assert nRESETm only and keep it asserted for at least four CLKIN cycles on wake-up 
from emulated dormant or emulated shutdown mode. The processor debug logic is kept 
active to permit debugging of the wake-up software.

After applying power-up reset to a CPU, you must initialize various registers. See Initialization 
on page 2-18 for more information.

CLKIN

nSYSPORESET

CLKIN

nRESETm

nSYSPORESET
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-14
ID092411 Non-Confidential



Functional Description 
Debug Reset

A debug reset initializes all the debug and non-debug logic of the processor, excluding the ACP 
logic. This reset causes a debugger to lose connection to the processor, and therefore ARM 
recommends you apply it only on request by the debugger, for example on detection of a fatal 
error condition. 

ACP reset

An ACP reset resets the internal ACP logic and the ACP master and slave AXI ports. You can 
use ACP reset when the peripheral connected to the ACP port is reset. You must not assert ACP 
reset independently of the CPU resets, unless the ACP is quiescent. The ACP is quiescent when 
both of the following are true:
• ACPIDLE is asserted
• the system cannot issue new transactions to the ACP.

Normal operation

During normal operation, neither processor reset nor power-on reset is asserted. If the 
EmbeddedICE-RT logic is not used, the value of PRESETDBGmn does not matter.

Halt operation

When nCPUHALTm is asserted, and nSYSPORESET and nRESETm are deasserted, the 
CPU is out of reset, but the PFU is inhibited from fetching instructions. When the CPU is halted 
in this way, you can, for example, use the AXI slave interface to store instructions in the TCMs 
using DMA. You can then deassert nCPUHALTm and the PFU starts fetching the preloaded 
instructions from TCMs. When the CPU has started to fetch, nCPUHALTm must not be 
asserted again except when the CPU is reset.

Independent resets

When the Cortex-R5 processor is configured with an ACP, you can reset the CPU or CPUs 
independently of the ACP. In a twin-CPU configuration it is possible to reset the CPUs 
independently of each other. Each CPU and the ACP has its own AMBA ports, and in a typical 
system some or all of these are ultimately connected to the same bus infrastructure. In such a 
system, to preserve ongoing transactions from other masters, the bus infrastructure is not 
normally reset when only one of the CPUs or the ACP is reset. To avoid loss of synchronization 
between bus infrastructure that is not reset and logic that is reset, you must ensure that the logic 
is quiescent before reset is applied to it. If reset is applied to the bus infrastructure at the same 
time as the connected logic, the logic does not have to be quiescent.

A CPU is quiescent when: 
• nWFEPIPESTOPPEDm or nWFIPIPESTOPPEDm is asserted
• all transactions to the CPU from the system have completed 
• the system can send no new stimulus to the CPU.

The ACP is quiescent when:
• ACPIDLE is asserted
• the system can send no new transactions to the ACP.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-15
ID092411 Non-Confidential



Functional Description 
2.3.3 Clocking

The processor has a single clock input, CLKIN, that is used for the CPU or both CPUs in a 
twin-CPU configuration. The same clock is used for the ACP ports and logic, and the 
debug-APB interfaces. 

The clock can be stopped indefinitely without loss of state.

The additional clock input, CLKIN2, is related to the dual-redundant core functionality, if 
included. If you are integrating a Cortex-R5 processor with dual-redundant core, contact the 
implementer of that macrocell for information about how to connect the clock inputs.

This section describes:
• AMBA interface clocking
• Clock gating.

AMBA interface clocking

The AXI master, AXI slave, ACP, debug-APB, and AXI and AHB peripheral ports must be 
connected to the AMBA systems that are synchronous to the processor clock, CLKIN, even if 
this might be at a lower frequency. This means that every rising edge on the AMBA system 
clock must be synchronous to a rising edge on CLKIN.

The AXI master interface clock enable signal ACLKENMm, the AXI slave interface clock 
enable signal ACLKENSm, ACP clock enable ACLKENC, debug-APB block enable 
PCLKENDBGm, and AHB and AXI peripheral port clock enables ACLKENP and 
HCLKENP respectively must be asserted on every CLKIN rising edge for which there is a 
simultaneous rising edge on the AXI system clock.

Figure 2-5 shows an example in which the processor is clocked at 400MHz (CLKIN), while the 
AXI system connected to the AXI master interface is clocked at 200MHz (ACLKM). The 
ACLKENMm clock indicates the relationship between the two clocks.

Figure 2-5 AXI interface clocking

If the AMBA system connected to an interface is clocked at the same frequency as the processor, 
then the corresponding clock enable signal must be tied HIGH.

Clock gating

In Standby Mode, the CPU can gate its own clock to save power. See Chapter 10 Power Control 
for more information about Standby Mode. You can use the nCLKSTOPPEDm output to gate 
the clock to the TCMs when the CPU is gating its own clock in Standby mode. If you do, you 
must design the logic so that the TCM clock starts running in time for the third rising edge for 
which nCLKSTOPPEDm is deasserted.

Figure 2-6 on page 2-17 shows an example of an ATCM access occurring immediately after 
CPU0 exits Standby Mode. nCLKSTOPPED0 indicates when the CPU internal clock, shown 
as CPU_CLK0, has been restarted. The clock to the ATCM, shown as ATCM_CLK0, has been 
gated off in Standby Mode and is restarted in time for the third rising edge, for which 

ACLKM

ACLKENMm

CLKIN
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-16
ID092411 Non-Confidential



Functional Description 
nCLKSTOPPEDm is deasserted. This enables the ATCM to respond to the access that CPU0 
presents by asserting ATCEN00. This example shows the worst-case, that is, the earliest TCM 
access that the CPU can generate after exiting Standby Mode.

Figure 2-6 Standby, wake-up

nCLKSTOPPED0

CPU_CLK0

CLKIN

ATCEN00

ATCM_CLK0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-17
ID092411 Non-Confidential



Functional Description 
2.4 Operation
When you power-up the Cortex-R5 processor, you must first reset it, as described in Clocking 
and resets on page 2-12. When it is out of reset, and no longer halted, it starts to fetch and 
execute instructions from an address and according to the instruction set as described in Reset 
on page 3-19. The processor initially fetches instructions from, and transfers data to and from 
either the TCM interfaces or the level-2 memory interfaces.

The processor also responds to stimulus received on its interfaces, for example interrupts, or 
transactions received on the AXI slave interface.

2.4.1 Initialization

When the processor has started executing, but before you can run application software on the 
processor, it must be initialized, including loading the appropriate software-configuration. This 
section describes the steps that the software must take to initialize the processor after reset.

Most of the architectural registers in the processor, such as r0-r14, and s0-s31 and d0-d15 when 
floating-point is included, are not reset. Because of this, you must initialize these for all modes 
before they are used, using an immediate-MOV instruction, or a PC-relative load instruction. 
The Current Program Status Register (CPSR) is given a known value on reset. This is described 
in the ARM Architecture Reference Manual. The reset values for the CP15 registers are 
described along with the registers in Chapter 4 System Control.

In addition, before you run the application, you might want to:
• program particular values into various registers, for example, stack pointers
• enable various processor features, for example, error correction
• program particular values into memory, for example, the TCMs.

Other initialization requirements are described in:
• MPU
• FPU
• Caches on page 2-19
• TCM on page 2-19.

MPU

If the processor has been built with an MPU, before you can use it you must:
• program and enable at least one of the regions
• enable the MPU in the SCTLR.

See c6, MPU memory region programming registers on page 4-53. Do not enable the MPU 
unless at least one MPU region is programmed and active. If the MPU is enabled, before using 
the TCM interfaces you must program MPU regions to cover the TCM regions to give access 
permissions to them.

FPU

If the processor has been built with a Floating Point Unit (FPU) you must enable it before VFP 
instructions can be executed:

• enable access to the FPU in the coprocessor access control register, see c1, Coprocessor 
Access Control Register on page 4-47

• enable the FPU by setting the EN-bit in the FPEXC register, see Floating-Point Exception 
Register, FPEXC on page 11-9.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-18
ID092411 Non-Confidential



Functional Description 
Note
 Floating-point logic is only available with the Cortex-R5F processor.

Caches

If the processor has been built with instruction or data caches, these must be invalidated before 
they are enabled, otherwise Unpredictable behavior can occur. See Cache operations on 
page 4-60.

If you are using an error checking scheme in the cache, you must enable this by programming 
the Auxiliary Control Register before invalidating the cache, to ensure that the correct error 
code or parity bits are calculated when the cache is invalidated. See c1, Auxiliary Control 
Register on page 4-41. An invalidate all operation never reports any ECC or parity errors.

If you are using the ACP, you must perform the data cache invalidation before initiating 
coherent ACP transactions. Until then, you must not depend on the coherency maintenance 
information signals.

TCM

The processor does not initialize the TCM RAMs. It is not essential to initialize all the memory 
attached to the TCM interface but ARM recommends that you do. In addition, the main 
application might require you to preload instructions or data into the TCM. This section 
describes various ways that you can perform data preloading. You can also configure the 
processor to use the TCMs from reset.

Preloading TCMs

You can write data to the TCMs using either store instructions or the AXI slave interface. 
Depending on the method you choose, you might require:
• particular hardware on the SoC that you are using
• boot code
• a debugger connected to the processor.

Methods to preload TCMs include:

Memory copy with running boot code 
The boot code includes a memory copy routine that reads data from a ROM, and 
writes it into the appropriate TCM. You must enable the TCM to do this, and it 
might be necessary to give the TCM one base address while the copy is occurring, 
and a different base address when the application is being run.

Copy data from the debug communications channel 
The boot code includes a routine to read data from the Debug Communications 
Channel (DCC) and write it into the TCM. The debug host feeds the data for this 
operation into the DCC by writing to the appropriate registers on the processor 
APB debug port.

Execute code in debug halt state 
The processor is put into debug halt state by the debug host, that then feeds 
instructions into the processor through the Instruction Transfer Register 
(DBGITR). The processor executes these instructions, that replace the boot code 
in either of the previous two methods.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-19
ID092411 Non-Confidential



Functional Description 
DMA into TCM 
The SoC includes a Direct Memory Access (DMA) device that reads data from a 
ROM, and writes it to the TCMs through the AXI slave interface.

Write to TCM directly from debugger 
A Debug Access Port (DAP) in the system is used to generate AMBA 
transactions to write data into the TCMs through the AXI slave interface. This 
DAP is controlled from the debug host through a JTAG chain.

Preloading TCMs with ECC

The error codes in the TCM RAM, if configured with an error scheme, are not initialized by the 
processor. Before a RAM location is read with ECC checking enabled, the error codes must be 
initialized. To calculate the error code correctly, the logic must have all the data in the data 
chunk that those bits protect. Therefore, when the TCM is being initialized, the writes must be 
of the same width and aligned to the data chunk that the error scheme protects.

You can initialize the TCM RAM with error checking turned on or off, according to the 
following rules. See c1, Auxiliary Control Register on page 4-41. The error code written to the 
TCM are valid for the data provided, even if the error checking is turned off.

If the slave port is used, write transactions must be used that write to the TCM memory as 
follows:

• If the error scheme is 32-bit ECC, the write transaction must start at a 32-bit aligned 
addresses and write a continuous block of memory, containing a multiple of 4 bytes. All 
bytes in the block must be written, that is, have their byte lane strobe asserted.

• If the error scheme is 64-bit ECC, the write transaction must start at a 64-bit aligned 
addresses and write a continuous block of memory, containing a multiple of 8 bytes. All 
bytes in the block must be written, that is, have their byte lane strobe asserted.

If initialization is done by running code on the processor, this is best done by a loop of stores 
that write to the whole of the TCM memory as follows:

• If the scheme is 32-bit ECC, use Store Word (STR), Store Two Words (STRD), or Store 
Multiple Words (STM) instructions to 32-bit aligned addresses.

• If the scheme is 64-bit ECC, use STRD or STM that has an even number of registers in 
the register list, with a 64-bit aligned starting address.

Note
 You can use the alignment-checking features of the processor to ensure that memory accesses 
are 32-bit aligned, but there is no checking for 64-bit alignment. If you are using STRD or STM, 
an alignment fault is generated if the address is not 32-bit aligned. For the same behavior with 
STR instructions, enable strict-alignment-checking by setting the A-bit in the SCTLR. See c1, 
System Control Register on page 4-38.

If the error scheme is 64-bit ECC, a simpler way to initialize the TCM is:

• Ensure error checking is off.

• Turn on 64-bit store behavior using CP15. See c15, Secondary Auxiliary Control Register 
on page 4-44.

• Write to the TCM using any store instructions, or any AXI write transactions. The 
processor performs read-modify-write accesses to ensure that all writes are to 64-bit 
aligned quantities, even though error checking is turned off.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-20
ID092411 Non-Confidential



Functional Description 
Note
 You can enable error checking and 64-bit store behavior on a per-TCM interface basis. 
References in this section, to these controls relate to whichever TCM is being initialized.

Using TCMs from reset

The processor can be pin-configured to enable the TCM interfaces from reset, and to select the 
address at which each TCM appears from reset. See TCM initialization on page 8-15 for more 
information. This enables you to configure the processor to boot from TCM but, to do this, the 
TCM must first be preloaded with the boot code. The nCPUHALTm pin can be asserted while 
the processor is in reset to stop the processor from fetching and executing instructions after 
coming out of reset. While the processor is halted in this way, the TCMs can be preloaded with 
the appropriate data. When the nCPUHALTm pin is deasserted, the processor starts fetching 
instructions from the reset vector address in the normal way.

Note
 When nCPUHALTm has been deasserted to start the processor fetching, nCPUHALTm must 
not be asserted again except when the processor is under processor or power-on reset, that is, 
nRESETm asserted. The processor does not halt if the nCPUHALTm pin is asserted while the 
processor is running.

Peripheral Interfaces

The memory regions used by the peripheral interfaces are fixed during integration. Before you 
access any peripherals that are in those regions, and attached to the peripheral ports, you must 
enable the peripheral interfaces. The AXI peripheral interface and the AHB peripheral interface 
can be enabled from reset by tying INITPPXm and INITPPHm HIGH respectively. If they are 
not enabled at reset your software must enable them by writing to the appropriate CP15 region 
register. See Peripheral interface region registers on page 4-84. The virtual AXI peripheral 
interface can only be enabled by software.

Note
 The virtual peripheral interface region is a sub-region of the AXI peripheral interface region. If 
the AXI peripheral interface is enabled, but the virtual AXI peripheral interface is not, then all 
accesses to this region of memory use the AXI peripheral port. Enabling the virtual AXI 
peripheral interface affects only the ordering and ID behavior of the transactions, not the 
physical port that they use.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 2-21
ID092411 Non-Confidential



Chapter 3 
Programmers Model

This chapter describes the processor registers and provides an overview for programming the 
processor. It contains the following sections:
• About the programmers model on page 3-2
• Modes of operation and execution on page 3-3
• Memory model on page 3-5
• Coherency on page 3-6
• Data structures on page 3-8
• Registers on page 3-9
• Program status registers on page 3-12
• Exceptions on page 3-17
• Acceleration of execution environments on page 3-28
• Unaligned and mixed-endian data access support on page 3-29
• Big-endian instruction support on page 3-30.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-1
ID092411 Non-Confidential



Programmers Model 
3.1 About the programmers model
The processor implements the ARMv7-R architecture that provides:
• the 32-bit ARM instruction set
• the Thumb-2 technology introduced in ARMv6T2, that extends the Thumb instruction set 

to a variable-length instruction set, that supports both 16-bit and 32-bit instructions. 

For more information on the ARM and Thumb instruction sets, see the ARM Architecture 
Reference Manual. This chapter describes some of the main features of the architecture but, for 
a complete description, see the ARM Architecture Reference Manual.

This chapter also makes reference to older versions of the ARM architecture that the processor 
does not implement. These references are included to contrast the behavior of the Cortex-R5 
processor with other processors you might have used that implement an older version of the 
architecture.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-2
ID092411 Non-Confidential



Programmers Model 
3.2 Modes of operation and execution
This section describes:
• Instruction set states
• Modes of operation

.

3.2.1 Instruction set states

The processor has two instruction set states:

ARM state The processor executes 32-bit, word-aligned ARM instructions in this 
state.

Thumb state The processor executes 32-bit and 16-bit halfword-aligned Thumb 
instructions in this state.

Note
 Transition between ARM state and Thumb state does not affect the processor mode or the 
register contents.

Switching state

The instruction set state of the processor can be switched between ARM state and Thumb state:

• Using the BX and BLX instructions, by a load to the PC, or with a data-processing instruction 
that does not set flags, with the PC as the destination register. Switching state is described 
in the ARM Architecture Reference Manual.

Note
 When the BXJ instruction is used the processor invokes the BX instruction.

• Automatically on an exception. You can write an exception handler routine in ARM or 
Thumb code. For more information, see Exceptions on page 3-17.

Interworking ARM and Thumb state

The processor enables you to mix ARM and Thumb code. For more information about 
interworking ARM and Thumb, see the RealView Compilation Tools Developer Guide.

3.2.2 Modes of operation

In each state there are seven modes of operation:
• User (USR) mode is the usual mode for the execution of ARM or Thumb programs. It is 

used for executing most application programs.
• Fast interrupt (FIQ) mode is entered on taking a fast interrupt.
• Interrupt (IRQ) mode is entered on taking a normal interrupt.
• Supervisor (SVC) mode is a protected mode for the operating system and is entered on 

taking a Supervisor Call (SVC), formerly SWI.
• Abort (ABT) mode is entered after a data or instruction abort.
• System (SYS) mode is a privileged user mode for the operating system.
• Undefined (UND) mode is entered when an Undefined Instruction exception occurs.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-3
ID092411 Non-Confidential



Programmers Model 
Modes other than User mode are collectively known as Privileged modes. Privileged modes are 
used to service interrupts or exceptions, or access protected resources.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-4
ID092411 Non-Confidential



Programmers Model 
3.3 Memory model
The processor views memory as a linear collection of bytes numbered in ascending order from 
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored 
word.

The processor can treat words of data in memory as being stored in either:
• Byte-invariant big-endian format
• Little-endian format.

Additionally, the processor supports mixed-endian and unaligned data accesses. For more 
information, see the ARM Architecture Reference Manual.

3.3.1  Byte-invariant big-endian format

In byte-invariant big-endian (BE-8) format, the processor stores the most significant byte of a 
word at the lowest-numbered byte, and the least significant byte at the highest-numbered byte. 
Figure 3-1 shows byte-invariant big-endian (BE-8) format.

Figure 3-1 Byte-invariant big-endian (BE-8) format

3.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte of the 
word and the highest-numbered byte is the most significant. Figure 3-2 shows little-endian 
format.

Figure 3-2 Little-endian format

Memory Register
Address
A[31:0]

+1

msbyte

lsbyte

+2

+3

B0

07

B1

B3B2B0 B1

31 24 23 16 15 8 7 0

B2

B3

Memory Register
Address
A[31:0]

+1

msbyte

lsbyte

+2

+3

b0

07

b1

b0b1b3 b2

31 24 23 16 15 8 7 0

b2

b3
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-5
ID092411 Non-Confidential



Programmers Model 
3.4 Coherency
In a system with multiple bus masters, memory coherency problems can occur when the masters 
access the same memory locations, if one or more of the masters has an associated cache. For 
example if there are two masters, A and B, each with its own level-one cache, the following 
problems can occur:

• Master A writes to a location in level-2 memory, but write-back caching is used so that 
the new value resides in the cache belonging to master A. Subsequent reads of the same 
address, by master B, access the old value held in the level-2 memory. This might continue 
indefinitely. 

• Master B reads a location in level-2 memory and caches the value read in its own cache. 
Master A writes to the same location, as in the previous paragraph, except that the write 
data propagates to the level-2 memory. If master B reads the same location it gets the old 
value held in its cache, rather than the new value that master A wrote. 

In a twin-CPU configuration of the Cortex-R5 processor, each CPU can have its own level-1 
cache. The Cortex-R5 processor might also be integrated into a system with other bus masters. 
In both cases the coherency problems can occur.

There are a number of solutions to these problems, including:

Data is not shared  
If the two masters never access the same data, there can be no coherency issues.

Data that is to be shared between masters is not cached  
In the Cortex-R5 processor, data that is in a shared region is never cached in the 
level-1 caches, even if the region is also cacheable. However, if a Cortex-R5 CPU 
is connected to a level-2 cache, then data in a shared region might be cached in 
its level-2 cache, leading to coherency problems, depending on how the level-2 
cache is configured. See Region attributes on page 7-8 for information about 
setting memory region attributes.

Data that is to be shared between masters is only cached in coherent caches  
If all the bus masters use the same level-2 cache, and do not cache the data in their 
level-1 cache, then the data stored in the level-2 cache is coherent.

Software coherency  
Cache maintenance operations can be used to manipulate the caches so that 
shared data is visible to other bus masters. In the first example, after master A 
writes into its cache data that is to be shared by master B, it must also clean the 
appropriate cache locations to ensure that the level-2 memory has been updated. 
In the second example, after master A writes data to the level-2 memory, it must 
cause master B to invalidate the appropriate cache locations in its cache so that 
master B reads the new value from level-2 memory.
The requirement for cache-clean operations can be avoided by using 
write-through caching, but invalidate operations are always required. In all cases, 
barrier operations are required to ensure that the level-2 memory updates have 
taken place before the cache maintenance operations are performed. Cortex-R5 
cache maintenance operations are described in Cache operations on page 4-60. 

Hardware coherency  
Coherency logic, associated with the masters and their caches, performs the 
appropriate cache manipulation operations to ensure coherency of data that is 
shared between the masters. ARM multi-processing (MP) technology provides 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-6
ID092411 Non-Confidential



Programmers Model 
hardware coherency between multiple CPUs and their associated caches within a 
cluster, for data that is in a shared memory region. A twin-CPU Cortex-R5 group 
is not an MP-cluster. No hardware coherency is provided between the two CPUs, 
see CPU configurations on page 1-10 for more information. The Cortex-R5 
processor does provide hardware coherency with an external master in limited 
situations using the ACP. See Accelerator Coherency Port interface on page 9-53 
for more information.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-7
ID092411 Non-Confidential



Programmers Model 
3.5 Data structures
The processor supports these data types:
• doubleword, 64-bit
• word, 32-bit
• halfword, 16-bit
• byte, 8-bit.

Note
 • When any of these types are described as unsigned, the N-bit data value represents a 

non-negative integer in the range 0 to +2N-1, using normal binary format.

• When any of these types are described as signed, the N-bit data value represents an integer 
in the range -2N-1 to +2N-1-1, using two’s complement format.

For best performance you must align these data types in memory as follows:
• doubleword quantities aligned to 8-byte boundaries, doubleword aligned
• word quantities aligned to 4-byte boundaries, word aligned
• halfword quantities aligned to 2-byte boundaries halfword aligned
• byte quantities can be placed on any byte boundary.

The processor supports mixed-endian and unaligned access. For more information, see 
Unaligned and mixed-endian data access support on page 3-29.

Note
 You cannot use LDRD, LDM, STRD, or STM instructions to access 32-bit quantities if they are not 
32-bit aligned.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-8
ID092411 Non-Confidential



Programmers Model 
3.6 Registers
The processor has a total of 37 program registers:
• 31 general-purpose 32-bit registers
• six 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating mode 
determine the registers that are available to the programmer.

3.6.1 The register set

In the processor the same register set is used in both the ARM and Thumb states. Sixteen general 
registers and one or two status registers are accessible at any time. In Privileged modes, 
alternative mode-specific banked registers become available. Figure 3-3 on page 3-11 shows the 
registers that are available in each mode.

The register set contains 16 directly-accessible registers, R0-R15. Another register, the Current 
Program Status Register (CPSR), contains condition code flags, status bits, and current mode 
bits. Registers R0-R12 are general-purpose registers that hold either data or address values. 
Registers R13, R14, R15, and the CPSR have these special functions: 

Stack pointer Software normally uses register R13 as a Stack Pointer (SP). The SRS and 
RFE instructions use Register R13.

Link Register Register R14 is used as the subroutine Link Register (LR).
Register R14 receives the return address when a Branch with Link (BL or 
BLX) instruction is executed.
You can use R14 as a general-purpose register at all other times. The 
corresponding banked registers R14_svc, R14_irq, R14_fiq, R14_abt, and 
R14_und similarly hold the return values when interrupts and exceptions 
are taken, or when BL or BLX instructions are executed within interrupt or 
exception routines.

Program Counter Register R15 holds the PC:
• in ARM state this is word-aligned
• in Thumb state this is halfword-aligned.

Note
 There are special cases for reading R15:

• reading the address of the current instruction plus, either:
— 4 in Thumb state
— 8 in ARM state.

• reading 0x00000000 (zero).
There are special cases for writing R15:
• causing a branch to the address that was written to R15
• ignoring the value that was written to R15
• writing bits [31:28] of the value that was written to R15 to the 

condition flags in the CPSR, and ignoring bits [27:0] (used for the 
MRC instruction only).

You must not assume any of these special cases unless it is explicitly stated 
in the instruction description. Instead, you must treat instructions with 
register fields equal to R15 as Unpredictable.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-9
ID092411 Non-Confidential



Programmers Model 
For more information, see the ARM Architecture Reference Manual.

In Privileged modes, another register, the Saved Program Status Register (SPSR), is accessible. 
This contains the condition code flags, status bits, and current mode bits saved as a result of the 
exception that caused entry to the current mode.

Banked registers have a mode identifier that indicates which mode they relate to. Table 3-1lists 
these identifiers.

FIQ mode has seven banked registers mapped to R8–R14 (R8_fiq–R14_fiq). As a result, many 
FIQ handlers do not have to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific 
registers mapped to R13 and R14, permitting a private stack pointer and link register for each 
mode.

Figure 3-3 on page 3-11 shows the register set, and those registers that are banked.

Table 3-1 Register mode identifiers

Mode Mode identifier

User usra

a. The usr identifier is usually 
omitted from register 
names. It is only used in 
descriptions where the User 
or System mode register is 
specifically accessed from 
another operating mode.

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System usra

Undefined und
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-10
ID092411 Non-Confidential



Programmers Model 
Figure 3-3 Register organization

Note
 For 16-bit Thumb instructions, the high registers, R8–R15, are not part of the standard register 
set. You can use special variants of the MOV instruction to transfer a value from a low register, in 
the range R0–R7, to a high register, and from a high register to a low register. The CMP instruction 
enables you to compare high register values with low register values. The ADD instruction 
enables you to add high register values to low register values. For more information, see the 
ARM Architecture Reference Manual.

General registers and program counter

System and User

Program status registers

= banked register

Supervisor Abort IRQ Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

FIQ

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-11
ID092411 Non-Confidential



Programmers Model 
3.7 Program status registers
The processor contains one CPSR and five SPSRs for exception handlers to use. The program 
status registers:
• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode.

Figure 3-4 shows the bit arrangement in the status registers.

Figure 3-4 Program status register

The following sections explain the meanings of these bits:
• The N, Z, C, and V bits
• The Q bit on page 3-13
• The IT bits on page 3-13
• The J bit on page 3-14
• The DNM bits on page 3-14
• The GE bits on page 3-14
• The E bit on page 3-15
• The A bit on page 3-15
• The I and F bits on page 3-15
• The T bit on page 3-15
• The M bits on page 3-15
• Modification of PSR bits by MSR instructions on page 3-16.

3.7.1 The N, Z, C, and V bits

The N, Z, C, and V bits are the condition code flags. You can optionally set them with arithmetic 
and logical operations, and also with MSR instructions and MRC instructions to R15. The processor 
tests these flags in accordance with an instruction's condition code to determine whether to 
execute that instruction.

In ARM state, most instructions can execute conditionally on the state of the N, Z, C, and V bits. 
The exceptions are:
• BKPT

• CPS

• LDC2

• MCR2

• MCRR2

M[4:0]TFIAEIT[7:2]GE[3:0]N J

Greater than
or equal to
Java state bit

Sticky overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than

Mode bits
Thumb state bit
FIQ disable
IRQ disable
Asynchronous abort 
disable bit
Data endianness bit

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q

IT[1:0]

DNM
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-12
ID092411 Non-Confidential



Programmers Model 
• MRC2

• MRRC2

• PLD

• RFE

• SETEND

• SRS

• STC2.

In Thumb state, the processor can only execute the Branch instruction conditionally. Other 
instructions can be made conditional by placing them in the If-Then (IT) block. For more 
information about conditional execution in Thumb state, see the ARM Architecture Reference 
Manual.

3.7.2 The Q bit

Certain multiply and fractional arithmetic instructions can set the Sticky Overflow, Q, flag:
• QADD

• QDADD

• QSUB

• QDSUB

• SMLAD

• SMLAxy

• SMLAWy

• SMLSD

• SMUAD

• SSAT

• SSAT16

• USAT

• USAT16.

The Q flag is sticky in that, when an instruction sets it, this bit remains set until an MSR instruction 
writing to the CPSR explicitly clears it. Instructions cannot execute conditionally on the status 
of the Q flag. 

To determine the status of the Q flag you must read the PSR into a register and extract the Q flag 
from this. For information of how the Q flag is set and cleared, see individual instruction 
definitions in the ARM Architecture Reference Manual.

3.7.3 The IT bits

IT[7:5] encodes the base condition code for the current IT block, if any. It contains b000 when 
no IT block is active.

IT[4:0] encodes the number of instructions that are to be conditionally executed, and whether 
the condition for each is the base condition code or the inverse of the base condition code. It 
contains b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the 
instruction, and the Then and Else (T and E) parameters in the instruction. During execution of 
an IT block, IT[4:0] is shifted to:
• reduce the number of instructions to be conditionally executed by one
• move the next bit into position to form the least significant bit of the condition code.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-13
ID092411 Non-Confidential



Programmers Model 
For more information on the operation of the IT execution state bits, see the ARM Architecture 
Reference Manual.

3.7.4 The J bit

The J bit in the CPSR returns 0 when read.

Note
 You cannot use an MSR to change the J bit in the CPSR.

3.7.5 The DNM bits

Software must not modify the Do Not Modify (DNM) bits. These bits are:

• Readable, to preserve the state of the processor, for example, during process context 
switches.

• Writable, to enable the processor to restore its state. To maintain compatibility with future 
ARM processors, and as good practice, use a read-modify-write strategy when you 
change the CPSR.

3.7.6 The GE bits

Some of the SIMD instructions set GE[3:0] as greater-than-or-equal bits for individual 
halfwords or bytes of the result, as Table 3-2 shows.

Table 3-2 GE[3:0] settings

GE[3] GE[2] GE[1] GE[0]

Instruction A op B greater than 
or equal to C

A op B greater than 
or equal to C

A op B greater 
than or equal to C

A op B greater 
than or equal to C

Signed

SADD16 [31:16] + [31:16] ≥ 0 [31:16] + [31:16] ≥ 0 [15:0] + [15:0] ≥ 0 [15:0] + [15:0] ≥ 0

SSUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

SADDSUBX [31:16] + [15:0] ≥ 0 [31:16] + [15:0] ≥ 0 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

SSUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 0 [15:0] + [31:16] ≥ 0

SADD8 [31:24] + [31:24] ≥ 0 [23:16] + [23:16] ≥ 0 [15:8] + [15:8] ≥ 0 [7:0] + [7:0] ≥ 0

SSUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0

Unsigned

UADD16 [31:16] + [31:16] ≥ 216 [31:16] + [31:16] ≥ 216 [15:0] + [15:0] ≥ 216 [15:0] + [15:0] ≥ 216

USUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

UADDSUBX [31:16] + [15:0] ≥ 216 [31:16] + [15:0] ≥ 216 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

USUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 216 [15:0] + [31:16] ≥216

UADD8 [31:24] + [31:24] ≥ 28 [23:16] + [23:16] ≥ 28 [15:8] + [15:8] ≥ 28 [7:0] + [7:0] ≥ 28

USUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-14
ID092411 Non-Confidential



Programmers Model 
Note
 GE bit is 1 if A op B ≥ C, otherwise 0.

The SEL instruction uses GE[3:0] to select which source register supplies each byte of its result. 
See the ARM Architecture Reference Manual for more information.

3.7.7 The E bit

ARM and Thumb instructions are provided to set and clear the E bit. The E bit controls 
load/store endianness. See the ARM Architecture Reference Manual for information on where 
the E bit is used.

3.7.8 The A bit

The A bit is set automatically by certain exceptions and is written by privileged software. It 
disables asynchronous Data Aborts. For more information on how to use the A bit, see 
Asynchronous abort masking on page 3-24.

3.7.9 The I and F bits

The I and F bits are the interrupt disable bits:
• when the I bit is set, IRQ interrupts are disabled
• when the F bit is set, FIQ interrupts are disabled.

Software can use MSR, CPS, MOVS pc, SUBS pc, LDM ..,{..pc}^, or RFE instructions to change the 
values of the I and F bits. They are also set automatically by some exceptions.

When NMFIs are enabled, updates to the F bit are restricted. For more information see 
Non-maskable fast interrupts on page 3-20.

3.7.10 The T bit

The T bit reflects the instruction set state:
• when the T bit is set, the processor executes in Thumb state
• when the T bit is clear, the processor executes in ARM state.

Note
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. The processor 
ignores any attempt to modify the T bit using an MSR instruction.

3.7.11 The M bits

M[4:0] are the mode bits. These bits determine the processor operating mode as Table 3-3 
shows. 

Table 3-3 PSR ode bit values

M[4:0] Mode

b10000 User

b10001 FIQ

b10010 IRQ
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-15
ID092411 Non-Confidential



Programmers Model 
Note
 • In Privileged mode an illegal value programmed into M[4:0] causes the processor to enter 

System mode.

• In User mode M[4:0] can be read. Writes to M[4:0] are ignored.

3.7.12 Modification of PSR bits by MSR instructions

In the ARMv7-R architecture each CPSR bit falls into one of these categories:

• Bits that are freely modifiable from any mode, either directly by MSR instructions or by 
other instructions whose side-effects include writing the specific bit or writing the entire 
CPSR.
Bits in Figure 3-4 on page 3-12 that are in this category are N, Z, C, V, Q, GE[3:0], and E.

• Bits that an MSR instruction must never modify, and so must only be written as a side-effect 
of another instruction. If an MSR instruction tries to modify these bits, the results are 
architecturally Unpredictable. In the processor these bits are not affected.
The bits in Figure 3-4 on page 3-12 that are in this category are the execution state bits 
[26:24], [15:10], and [5].

• Bits that can only be modified from Privileged modes, and that instructions completely 
protect from modification while the processor is in User mode. Entering a processor 
exception is the only way to modify these bits while the processor is in User mode, as 
described in Exceptions on page 3-17. 
Bits in Figure 3-4 on page 3-12 that are in this category are A, I, F, and M[4:0].

b10011 Supervisor

b10111 Abort

b11011 Undefined

b11111 System

Table 3-3 PSR ode bit values (continued)

M[4:0] Mode
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-16
ID092411 Non-Confidential



Programmers Model 
3.8 Exceptions
Exceptions are taken whenever the normal flow of a program must temporarily halt, for 
example, to service an interrupt from a peripheral. Before attempting to handle an exception, the 
processor preserves the critical parts of the processor state so that the original program can 
resume when the handler routine has finished.

This section provides information of the processor exception handling:
• Exception entry and exit summary
• Reset on page 3-19
• Interrupts on page 3-19
• Aborts on page 3-23
• Supervisor call instruction on page 3-25
• Undefined Instruction on page 3-26
• Breakpoint instruction on page 3-26
• Exception vectors on page 3-27.

Note
 When the processor is in debug halt state, and an exception occurs, it is handled differently to 
normal. See Exceptions in debug state on page 12-48 for more information

3.8.1 Exception entry and exit summary

Table 3-4 summarizes the PC value preserved in the relevant R14 on exception entry, and the 
instruction ARM recommends for exiting the exception handler.

Table 3-4 Exception entry and exit

Exception 
or entry 

Recommended return
instruction

Previous state
Notes

ARM R14_x Thumb R14_x

SVCa MOVS PC, R14_svc IA + 4 IA + 2 Where the IA is the address of the SVC or 
Undefined Instruction.

UNDEF Variesb IA + 4 IA + 2

PABT SUBS PC, R14_abt, #4 IA + 4 IA + 4 Where the IA is the address of instruction that had 
the Prefetch Abort.

FIQ SUBS PC, R14_fiq, #4 IA + 4 IA + 4 Where the IA is the address of the instruction that 
was not executed because the FIQ or IRQ took 
priority.IRQ SUBS PC, R14_irq, #4 IA + 4 IA + 4

DABT SUBS PC, R14_abt, #8 IA + 8 IA + 8 Where the IA is the address of the Load or Store 
instruction that generated the Data Abort.

RESET NA - - The value saved in R14_svc on reset is 
Unpredictable.

BKPT SUBS PC, R14_abt, #4 IA + 4 IA + 4 Software breakpoint.

a. Formerly SWI.
b. The return instruction you must use after an Undefined Instruction exception has been handled depends on whether you want to retry the 

undefined instruction or not and, if not, on the size of the Undefined instruction.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-17
ID092411 Non-Confidential



Programmers Model 
Taking an exception

When taking an exception the processor: 

1. Preserves the address of the next instruction in the appropriate R14(LR). When the 
exception is taken from:
ARM state 

The processor writes the address of the instruction into the LR, offset by a value 
(current IA + 4 or IA + 8 depending on the exception) that causes the program 
to resume from the correct place on return.

Thumb state 
The processor writes the address of the instruction into the LR, offset by a value 
(current IA + 2, IA + 4 or IA + 8 depending on the exception) that causes the 
program to resume from the correct place on return.

2. Copies the CPSR into the appropriate SPSR. Depending on the exception type, the 
processor might modify the IT execution state bits of the CPSR prior to this operation to 
facilitate a return from the exception.

3. Forces the CPSR mode bits to a value that depends on the exception and clears the IT 
execution state bits in the CPSR.

4. Sets the E bit based on the state of the EE bit in the SCTLR, see c1, System Control 
Register on page 4-38.

5. The T bit is set based on the state of the TE bit in the SCTLR, see c1, System Control 
Register on page 4-38.

6. Forces the PC to fetch the next instruction from the relevant exception vector.

The processor can also set the interrupt disable flags to prevent otherwise unmanageable nesting 
of exceptions.

Leaving an exception

When an exception has completed, the exception handler must move the LR, minus an offset, 
to the PC. The offset varies according to the type of exception, as Table 3-4 on page 3-17 shows.

Typically the return instruction is an arithmetic or logical operation with the S bit set and Rd = 
R15, so the processor copies the SPSR back to the CPSR. Alternatively, an LDM ..,{..pc}^ or 
RFE instruction can perform a similar operation if the return state has been pushed onto a stack.

Note
 The action of restoring the CPSR from the SPSR:

• Automatically restores the T, E, A, I, and F bits to the value they held immediately prior 
to the exception.

• Normally resets the IT execution state bits to the values held immediately prior to the 
exception. If the exception handler wants to return to the following instruction, these bits 
might require to be manually advanced to avoid applying the incorrect condition codes to 
that instruction. For more information about the IT instruction elements and Undefined 
instructions, and an example of the exception handler code, see the ARM Architecture 
Reference Manual.
Because SVC handlers are always expected to return after the SVC instruction, the IT 
execution state bits are automatically advanced when an exception is taken prior to 
copying the CPSR into the SPSR. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-18
ID092411 Non-Confidential



Programmers Model 
3.8.2 Reset

When the nRESETm signal is driven LOW a reset occurs, and the processor abandons the 
executing instruction.

When nRESETm and nCPUHALTm are driven HIGH again the processor:

1. Forces CPSR M[4:0] to b10011 (Supervisor mode) and sets the A, I, and F bits in the 
CPSR. The E bit is set based on the state of the CFGEE pin. Other bits in the CPSR are 
indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.

3. Reverts to ARM state or Thumb state depending on the state of the TEINIT pin, and 
resumes execution.

After reset, all register values except the PC and CPSR are indeterminate. 

See Resets on page 2-12 for more information on the reset behavior for the processor.

3.8.3 Interrupts

The processor has two interrupt inputs, for normal interrupts (nIRQm) and fast interrupts 
(nFIQm). Each interrupt pin, when asserted and not masked, causes the processor to take the 
appropriate type of interrupt exception. See Exceptions on page 3-17 for more information. The 
CPSR.F and CPSR.I bits control masking of fast and normal interrupts respectively.

A number of features exist to improve the interrupt latency, that is, the time taken between the 
assertion of the interrupt input and the execution of the interrupt handler. By default, the 
processor uses the Low Interrupt Latency (LIL) behaviors introduced in version 6 and later of 
the ARM architecture. The processor also has a port for connection of a Vectored Interrupt 
Controller (VIC), and supports Non-Maskable Fast Interrupts (NMFI).

The following subsections describe interrupts:
• Interrupt request
• Fast interrupt request on page 3-20
• Non-maskable fast interrupts on page 3-20
• Low interrupt latency on page 3-20
• Interrupt controller on page 3-21.

Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQm input. An IRQ 
has a lower priority than an FIQ, and is masked on entry to an FIQ sequence. You must ensure 
that the nIRQm input is held LOW until the processor acknowledges the interrupt request, 
either from the VIC interface or the software handler.

Irrespective of whether the exception is taken from ARM state or Thumb state, an IRQ handler 
returns from the interrupt by executing:

SUBS PC, R14_irq, #4

You can disable IRQ exceptions within a Privileged mode by setting the CPSR.I bit to b1. See 
Program status registers on page 3-12. IRQ interrupts are automatically disabled when an IRQ 
occurs, by setting the CPSR.I bit. You can use nested interrupts but it is up to you to save any 
corruptible registers and to re-enable IRQs by clearing the CPSR.I bit.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-19
ID092411 Non-Confidential



Programmers Model 
Fast interrupt request

The Fast Interrupt Request (FIQ) reduces the execution time of the exception handler relative 
to a normal interrupt. FIQ mode has eight private registers to reduce, or even remove the 
requirement for register saving (minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQm input signal LOW. You must ensure that 
the nFIQm input is held LOW until the processor acknowledges the interrupt request from the 
software handler.

Irrespective of whether exception entry is from ARM state or Thumb state, an FIQ handler 
returns from the interrupt by executing:

SUBS PC, R14_fiq, #4

If Non-Maskable Fast Interrupts (NMFIs) are not enabled, you can mask FIQ exceptions by 
setting the CPSR.F bit to b1. For more information see:
• Program status registers on page 3-12
• Non-maskable fast interrupts.

FIQ and IRQ interrupts are automatically masked by setting the CPSR.F and CPSR.I bits when 
an FIQ occurs. You can use nested interrupts but it is up to you to save any corruptible registers 
and to re-enable interrupts.

Non-maskable fast interrupts

When NMFI behavior is enabled, FIQ interrupts cannot be masked by software. Enabling NMFI 
behavior ensures that when the FIQ mask, that is, the CPSR.F bit, has been cleared by the reset 
handler, fast interrupts are always taken as quickly as possible, except during handling of a fast 
interrupt. This makes the fast interrupt suitable for signaling critical events. NMFI behavior is 
controlled by a configuration input signal CFGNMFIm, that is asserted HIGH to enable NMFI 
operation. There is no software control of NMFI.

Software can detect whether NMFI operation is enabled by reading the NMFI bit of the SCTLR:
NMFI == 0 Software can mask FIQs by setting the CPSR.F bit to b1.
NMFI == 1 Software cannot mask FIQs.

For more information see c1, System Control Register on page 4-38.

When the NMFI bit in the SCTLR is b1:
• an instruction writing b0 to the CPSR.F bit clears it to b0
• an instruction writing b1 to the CPSR.F bit leaves it unchanged
• the CPSR.F bit can be set to b1 only by an FIQ or reset exception entry.

Low interrupt latency

Low Interrupt Latency (LIL) is a set of behaviors that reduce the interrupt latency for the 
processor, and is enabled by default. That is, the FI bit [21] in the SCTLR is Read-as-One.

LIL behavior enables accesses to Normal memory, including multiword accesses and external 
accesses, to be abandoned part-way through execution so that the processor can react to a 
pending interrupt faster than would otherwise be the case. When an instruction is abandoned in 
this way, the processor behaves as if the instruction was not executed at all. If, after handling the 
interrupt, the interrupt handler returns to the program in the normal way using instruction SUBS 
pc, r14, #4, the abandoned instruction is re-executed. This means that some of the memory 
accesses generated by the instruction are performed twice.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-20
ID092411 Non-Confidential



Programmers Model 
Memory that is marked as Strongly Ordered or Device type is typically sensitive to the number 
of reads or writes performed. Because of this, instructions that access Strongly Ordered or 
Device memory are never abandoned when they have started accessing memory. These 
instructions always complete either all or none of their memory accesses. The same is true of all 
accesses to the AXI peripheral port, regardless of the memory type. Therefore, to minimize the 
interrupt latency, you must avoid the use of multiword load/store instructions to memory 
locations that are marked as Strongly Ordered or Device or are in the AXI or virtual AXI 
peripheral interface.

Interrupt controller

The processor includes a VIC port for connection of a Vectored Interrupt Controller (VIC). An 
interrupt controller is a peripheral that handles multiple interrupt sources. Features usually 
found in an interrupt controller are:

• multiple interrupt request inputs, one for each interrupt source, and one or more 
amalgamated interrupt request outputs to the processor

• the ability to mask out particular interrupt requests

• prioritization of interrupt sources for interrupt nesting.

In a system with an interrupt controller with these features, software is still required to:

• determine from the interrupt controller which interrupt source is requesting service

• determine where the service routine for that interrupt source is loaded

• mask or clear that interrupt source, before re-enabling processor interrupts to permit 
another interrupt to be taken.

A VIC does all these in hardware to reduce the interrupt latency. It supplies the starting address 
of the service routine corresponding to the highest priority asserted interrupt source directly to 
the processor. When the processor has accepted this address, it masks the interrupt so that the 
processor can re-enable interrupts without clearing the source. The PL192 VIC is an Advanced 
Microcontroller Bus Architecture (AMBA) compliant, System-on-Chip (SoC) peripheral that is 
developed, tested, and licensed by ARM. 

You can use the VIC port to connect a PL192 VIC to the processor. See the ARM PrimeCell 
Vectored Interrupt Controller (PL192) Technical Reference Manual for more information about 
the PL192 VIC. You can enable the VIC port by setting the VE bit in the SCTLR. When the VIC 
port is enabled and an IRQ occurs, the processor performs an handshake over the VIC interface 
to obtain the address of the handling routine for the IRQ.

Interrupt entry flowchart

Figure 3-5 on page 3-22 is a flowchart for processor interrupt recognition. It shows all the 
necessary decisions and actions for a complete interrupt entry. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-21
ID092411 Non-Confidential



Programmers Model 
Figure 3-5 Interrupt entry sequence

For information on the I and F bits that Figure 3-5 shows, see Program status registers on 
page 3-12. For information on the V and VE bits that Figure 3-5 shows, see c1, System Control 
Register on page 4-38.

LR_fiq = RA+4

CPSR[4:0] = FIQ mode

CPSR[5] = TE

CPSR[7] = 1, CPSR[6] = 1

SPSR_fiq = CPSR

V==1

FALSE

TRUE

FALSE

!((nFIQ||F)
&&

(nIRQ||I))

!(nFIQ||F)

VE==1FALSEV==1

TRUE

PC[31:0] = Handler address 
provided by VIC

Acknowledge address to VIC

TRUE

FALSE
Is VIC ready to 
provide handler 

address?

FALSE

TRUE

TRUE

Start handshake with VIC

LR_irq = RA+4

SPSR_irq = CPSR

CPSR[4:0] = IRQ mode

FALSE

CPSR[7] = 1

CPSR[5] = TE

VE==1

PC[31:0] = 
0x0000001C

PC[31:0] = 
0xFFFF001C

PC[31:0] = 
0xFFFF0018

PC[31:0] = 
0x00000018

!VE || VIC 
handshake 
complete

FALSE

Start

TRUE

TRUE

TRUE

FALSE
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-22
ID092411 Non-Confidential



Programmers Model 
3.8.4 Aborts

When the processor memory system cannot complete a memory access successfully, an abort is 
generated. Aborts can occur for a number of reasons, for example:
• a permission fault indicated by the MPU
• an error response to a transaction on the AMBA memory bus
• an error detected in the data by the ECC checking logic.

An error occurring on an instruction fetch generates a prefetch abort. Errors occurring on data 
accesses generate data aborts. Aborts are also categorized as either synchronous, previously 
known as precise, or asynchronous, previously known as imprecise.

When a prefetch or data abort occurs, the processor takes the appropriate type of exception. See 
Exception entry and exit summary on page 3-17 for more information. Additional information 
about the type of abort is stored in registers, and signaled as events. See Fault handling on 
page 8-7 for more information about the types of fault that can cause an abort and the 
information that the processor provides about these faults.

Prefetch aborts

When a Prefetch Abort (PABT) occurs, the processor marks the prefetched instruction as 
invalid, but does not take the exception until the instruction is to be executed. If the instruction 
is not executed, for example because a branch occurs while it is in the pipeline, the abort does 
not take place.

All prefetch aborts are synchronous.

Data aborts

An error occurring on a data memory access can generate a data abort. If the instruction 
generating the memory access is not executed, for example, because it fails its condition codes, 
or is interrupted, the data abort does not take place.

A Data Abort (DABT) can be either synchronous or asynchronous, depending on the type of 
fault that caused it.

The Cortex-R5 processor implements the base restored Data Abort model, as opposed to a base 
updated Data Abort model.

With the base restored Data Abort model, when a Data Abort exception occurs during the 
execution of a memory access instruction, the processor hardware always restores the base 
register to the value it contained before the instruction was executed. For more information, see 
the ARM Architecture Reference Manual.

Synchronous aborts

A synchronous abort, also known as a precise abort, is one for which the exception is guaranteed 
to be taken on the instruction that generated the aborting memory access. The abort handler can 
use the value in the Link Register (r14_abt) to determine which instruction generated the abort, 
and the value in the Saved Program Status Register (SPSR_abt) to determine the state of the 
processor when the abort occurred.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-23
ID092411 Non-Confidential



Programmers Model 
Asynchronous aborts

An asynchronous abort, also known as an imprecise abort, is one for which the exception is 
taken on a later instruction than the instruction that generated the aborting memory access. The 
abort handler cannot determine which instruction generated the abort, or the state of the 
processor when the abort occurred. Therefore, asynchronous aborts are normally fatal.

Asynchronous aborts can be generated by store instructions to Normal-type or Device-type 
memory. When the store instruction is committed, the data is normally written into a buffer that 
holds the data until the memory system has sufficient bandwidth to perform the write access. 
This gives read accesses higher priority. The write data can be held in the buffer for a long 
period, during which many other instructions can complete. If an error occurs when the write is 
finally performed, this generates an asynchronous abort.

Asynchronous abort masking

The nature of asynchronous aborts means that they can occur while the processor is handling a 
different abort. If an asynchronous abort generates a new exception in such a situation, the 
r14_abt and SPSR_abt values are overwritten. If this occurs before the data is pushed to the 
stack in memory, the state information about the first abort is lost. To prevent this from 
happening, the CPSR contains a mask bit to indicate that an asynchronous abort cannot be 
accepted, the A-bit. When the A-bit is set, any asynchronous abort that occurs is held pending 
by the processor until the A-bit is cleared, when the exception is actually taken. The A-bit is 
automatically set when abort, IRQ or FIQ exceptions are taken, and on reset. You must only 
clear the A-bit in an abort handler after the state information has either been stacked to memory, 
or is no longer required.

Only one pending asynchronous abort of each asynchronous abort type is supported. The 
processor supports the following pending asynchronous aborts:

• AXI-master port external error.
If a subsequent external error is signaled while another one is pending, the later one is 
ignored and only one abort is taken.

• One TCM write external error for each TCM port.

• Cache write parity or ECC error.
If a subsequent cache parity or ECC error is signaled while another one is pending, the 
later one is normally ignored and only one abort is taken. However, if the pending error 
was correctable, and the later one is not correctable, the pending error is ignored, and one 
abort is taken for the error that cannot be corrected.

• AXI peripheral port external error from either main or virtual interface access. 
If a subsequent AXI peripheral port error is signalled while another one is pending, the 
later one is ignored and only one abort is taken.

• AHB peripheral port external error.

Memory barriers

When a store instruction, or series of instructions has been executed to normal-type or 
device-type memory, it is sometimes necessary to determine whether any errors occurred 
because of these instructions. Because most of these errors are reported asynchronously, they 
might not generate an abort exception until some time after the instructions are executed. To 
ensure that all possible errors have been reported, you must execute a DSB instruction. Abort 
exceptions are only taken because of these errors if they are not masked, that is, the CPSR A-bit 
is clear. If the A-bit is set, the aborts are held pending.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-24
ID092411 Non-Confidential



Programmers Model 
Aborts in Strongly Ordered and Device memory

When a memory access generates an abort, the instruction generating that access is abandoned, 
even if it has not completed all its memory accesses, and the abort exception is taken. The abort 
handler can then do one of the following:

• fix the error and return to the instruction that was abandoned, to re-execute it

• perform the appropriate data transfers on behalf of the aborted instruction and return to 
the instruction after the abandoned instruction

• treat the error as fatal and terminate the process.

If the abort handler returns to the abandoned instruction, some of the memory accesses 
generated are repeated. The effect is that multiword load/store instructions can access the same 
memory location twice. The first access occurs before the abort is detected, and the second when 
the instruction is restarted.

In Strongly Ordered or Device type memory, repeating memory accesses might have 
unacceptable side-effects. Therefore, if the abort handler can fix the error and re-execute the 
aborted instruction, you must ensure that for all memory errors on multiword load/store 
instructions, either:
• all side effects of repeating accesses are inconsequential
• the error must either occur on the first word accessed or not at all.

The instructions that this rule applies to are:

• All forms of ARM instructions LDM, and LDRD, all forms of STM, STRD including VFP 
variants, and unaligned LDR, STR, LDRH, and STRH

• Thumb instructions LDMIA, LDRD, SDRD, PUSH, POP, and STMIA including VFP variants, and 
unaligned LDR, STR, LDRH, and STRH.

Abort handler

If you configure the processor with parity or ECC on the caches or the TCMs, and the abort 
handler is in one of these memories, then it is possible for a parity or ECC error to occur in the 
abort handler. If the error is not recoverable, then a synchronous abort occurs and the processor 
loops until the next interrupt. The LR and SPSR values for the original abort are also lost. 
Therefore, you must construct software that ensures that no synchronous aborts occur when in 
the abort handler. This means the abort handler must be in external memory and not cached.

3.8.5 Supervisor call instruction

You can use the SuperVisor Call (SVC) instruction (formerly SWI) to enter Supervisor mode, 
usually to request a particular supervisor function. The SVC handler reads the opcode to extract 
the SVC function number. A SVC handler returns by executing the following instruction, 
irrespective of the processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SVC. 

IRQs are disabled when a software interrupt occurs. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-25
ID092411 Non-Confidential



Programmers Model 
The processor modifies the IT execution state bits on exception entry so that the values that the 
processor writes into the SPSR are correct for the instruction following the SVC. This means 
that the SVC handler does not have to perform any special action to accommodate the IT 
instruction. For more information on the IT instruction, see the ARM Architecture Reference 
Manual.

3.8.6 Undefined Instruction

The processor takes the Undefined Instruction exception when:

• a double-precision VFP operation is attempted when only single-precision support is 
implemented

• a VFP operation is attempted when the VFP is not enabled

Software can use this mechanism to extend the ARM instruction set by emulating Undefined 
coprocessor instructions. Undefined Instruction exceptions also occur when a UDIV or SDIV 
instruction is executed, the value in Rm is zero, and the DZ bit in the SCTLR is set.

If the handler is required to return after the instruction that caused the Undefined Instruction 
exception, it must:

• Advance the IT execution state bits in the SPSR before restoring SPSR to CPSR. This is 
so that the correct condition codes are applied to the next instruction on return. The 
pseudo-code for advancing the IT bits is:
Mask = SPSR[11,10,26,25];
if (Mask != 0) {

Mask = Mask << 1;
SPSR[12,11,10,26,25] = Mask;
}

if (Mask[3:0] == 0) {
SPSR[15:12] = 0;

}

• Obtain the instruction that caused the Undefined Instruction exception and return 
correctly after it. Exception handlers must also be aware of the potential for both 16-bit 
and 32-bit instructions in Thumb state.
After testing the SPSR and determining the instruction was executed in Thumb state, the 
Undefined handler must use the following pseudo-code or equivalent to obtain this 
information:
addr = R14_undef - 2
instr = Memory[addr,2]
if (instr >> 11) > 28 { /* 32-bit instruction */
instr = (instr << 16) | Memory[addr+2,2]
if (emulating, so return after instruction wanted) }
R14_undef += 2 // 

} // 
}

After this, instr holds the instruction (in the range 0x0000-0xE7FF for a 16-bit instruction, 
0xE8000000-0xFFFFFFFF for a 32-bit instruction), and the exception can be returned from 
using a MOVS PC, R14 to return after it.

IRQs are disabled when an Undefined Instruction trap occurs. For more information about 
Undefined instructions, see the ARM Architecture Reference Manual.

3.8.7 Breakpoint instruction

A breakpoint (BKPT) instruction operates as though the instruction causes a Prefetch Abort.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-26
ID092411 Non-Confidential



Programmers Model 
A breakpoint instruction does not cause the processor to take the Prefetch Abort exception until 
the instruction is to be executed. If the instruction is not executed, for example because a branch 
occurs while it is in the pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction irrespective of 
the processor operating state:

SUBS PC, R14_abt, #4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note
 If the ETM-R5 is configured into Halt debug-mode, a breakpoint instruction causes the 
processor to enter debug state. See Halting debug-mode debugging on page 12-3.

3.8.8 Exception vectors 

You can configure the location of the exception vector addresses by setting the V bit in CP15 c1 
System Control Register to enable HIVECS, as Table 3-5 shows.

Table 3-6 shows the exception vector addresses and entry conditions for the different exception 
types.

Table 3-5 Configuration of exception vector address locations

Value of V bit Exception vector 
base location

0 0x00000000

1 (HIVECS) 0xFFFF0000

Table 3-6 Exception vectors

Exception Offset from 
vector base Mode on entry A bit on entry F bit on entry I bit on entry

Reset 0x00 Supervisor Set Set Set

Undefined Instruction 0x04 Undefined Unchanged Unchanged Set

Software interrupt 0x08 Supervisor Unchanged Unchanged Set

Abort (prefetch) 0x0C Abort Set Unchanged Set

Abort (data) 0x10 Abort Set Unchanged Set

IRQ 0x18 IRQ Set Unchanged Set

FIQ 0x1C FIQ Set Set Set
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-27
ID092411 Non-Confidential



Programmers Model 
3.9 Acceleration of execution environments

Because the ARMv7-R architecture requires Jazelle® software compatibility, three Jazelle 
registers are implemented in the processor.

Table 3-7 shows the Jazelle register instruction summary and the response to the instructions.

Note
 Because no hardware acceleration is present in the processor, when the BXJ instruction is used, 
the BX instruction is invoked.

Table 3-7 Jazelle register instruction summary

Register Instruction Response

Jazelle ID MRC p14, 7, <Rd>, c0, c0, 0

MCR p14, 7, <Rd>, c0, c0, 0

Read as zero
Ignore writes

Jazelle main configuration MRC p14, 7, <Rd>, c2, c0, 0

MCR p14, 7, <Rd>, c2, c0, 0

Read as zero
Ignore writes

Jazelle OS control MRC p14, 7, <Rd>, c1, c0, 0

MCR p14, 7, <Rd>, c1, c0, 0

Read as zero
Ignore writes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-28
ID092411 Non-Confidential



Programmers Model 
3.10 Unaligned and mixed-endian data access support
The processor supports unaligned memory accesses. Unaligned memory accesses was 
introduced with ARMv6. Bit [22] of c1, Control Register is always 1.

The processor supports byte-invariant big-endianness BE-8 and little-endianness LE. The 
processor does not support word-invariant big-endianness BE-32. Bit [7] of c1, Control Register 
is always 0.

For more information on unaligned and mixed-endian data access support, see the ARM 
Architecture Reference Manual.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-29
ID092411 Non-Confidential



Programmers Model 
3.11 Big-endian instruction support
The processor supports little-endian or big-endian instruction format, and is dependent on the 
setting of the CFGIE pin. This is reflected in bit [31] of the SCTLR. For more information, see 
c1, System Control Register on page 4-38.

Note
 The facility to use big-endian or little-endian instruction format is an implementation option, 
and you can therefore remove it in specific implementations. If this facility is not present, the 
CFGIE pin is still reflected in the SCTLR but the instruction format is always little-endian. The 
Build Options Register indicates whether the processor has been built with instruction 
endianness control. See Build Options Registers on page 4-79.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 3-30
ID092411 Non-Confidential



Chapter 4 
System Control 

This chapter describes the system control registers, their structure, operation, and how to use 
them. It contains the following sections:
• About system control on page 4-2
• Register summary on page 4-7
• Register descriptions on page 4-9.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-1
ID092411 Non-Confidential



System Control 
4.1 About system control
This section gives an overview of the system control coprocessor. For more information of the 
registers in the system control coprocessor, see Register descriptions on page 4-9.

The system control coprocessor, CP15, controls and provides status information for the 
functions implemented in the processor. The main functions of the system control coprocessor 
are:
• overall system control and configuration
• cache configuration and management
• Memory Protection Unit (MPU) configuration and management
• system performance monitoring.

The system control coprocessor does not exist in a distinct physical block of logic.

4.1.1 System control and configuration

The system control and configuration registers provide overall management of:
• memory functionality
• interrupt behavior
• exception handling
• program flow prediction
• coprocessor access rights for CP0-CP13, including the VFP, CP10-11.

The system control and configuration registers also provide the processor ID and information 
on configured options.

The system control and configuration registers consist of 18 read-only registers and seven 
read/write registers. Figure 4-1 shows the arrangement of registers in this functional group.

Figure 4-1 System control and configuration registers

Some of the functionality depends on how you set external signals at reset.

CRn

c1

Coprocessor Access Register
Auxiliary Control Register
System Control Register

1
0c00

c13 0c0
Context ID Register

0

Opcode_2CRmOpcode_1
c0 Main ID Register0c00

Debug Feature Register 0
Auxiliary Feature Register 0

{0, 1} Processor Feature Registers 0, 1
Multiprocessor Affinity Register

Memory Model Feature Registers 0 - 3
Instruction Set Attributes Registers 0 - 5

c1
5

2
3

{4–7}
{0-5}c2

2

Write-only Accessible in User modeRead-only Read/write

FCSE  PID Register
1

c15 00 c0
c2 0

1

Secondary Auxiliary Control Register
Build Options Register 1
Build Options Register 2

Auxiliary ID Register1 c0 7

7 Pin Options Register
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-2
ID092411 Non-Confidential



System Control 
4.1.2 MPU control and configuration

The MPU control and configuration registers:

• control program access to memory

• designate areas of memory as either:
— Normal, Non-cacheable
— Normal, Cacheable
— Device
— Strongly Ordered.

• detect MPU faults and external aborts.

The MPU control and configuration registers consist of one read-only register and 11 read/write 
registers. Figure 4-2 shows the arrangement of registers in this functional group.

Figure 4-2 MPU control and configuration registers

4.1.3 Cache control and configuration

The cache control and configuration registers:

• provide information on the size and architecture of the instruction and data caches

• control cache maintenance operations that include clean and invalidate caches, drain and 
flush buffers, and address translation

• override cache behavior during debug or interruptible cache operations.

The cache control and configuration registers consist of three read-only registers, one read/write 
register, and a number of write-only registers. Figure 4-3 on page 4-4 shows the arrangement of 
the registers in this functional group.

4c00

Opcode_2CRmCRn Opcode_1

1

Data Fault Address Register

Data Fault Status Register0

0

c5

Region Size and Enable Register
Region Base Register

Region Access Control Register
Memory Region Number Register

Instruction Fault Address Register

Instruction Fault Status Register

1
Auxilary Data Fault Status Register
Auxilary Instruction Fault Status Register

0

c0
0 c0

c1

c6 0 c0

0c1
2
4
0c2

2

Write-only Accessible in User modeRead-only Read/write

0 Correctable Fault Location Registerc15 c30

MPU Type Register
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-3
ID092411 Non-Confidential



System Control 
Figure 4-3 Cache control and configuration registers

4.1.4 Interface control and configuration

The interface control and configuration registers:
• indicate the size, number and status of the TCM regions
• define and enable TCM regions.
• indicate the size and address of the peripheral interface regions
• enable the peripheral interface regions
• control AXI-slave interface permissions

The interface control and configuration registers consist of two read-only registers and six 
read/write registers. Figure 4-4 shows the arrangement of registers.

Figure 4-4 TCM control and configuration registers

4.1.5 System performance monitor

The performance monitor registers:
• control the monitoring operation
• count events.

The system performance monitor consists of 12 read/write registers. Figure 4-5 on page 4-5 
shows the arrangement of registers in this functional group.

Opcode_2CRmOpcode_1

1c0 0 c0 Cache Type Register

CRn

c7 † Cache Operations Registers ‡

‡ See description of cache operations 
for operations with User mode access

Invalidate all Data Cache Registerc15 0
0
0 c5

Write-only Accessible in User modeRead-only Read/write

Current Cache Size Identification Register
Current Cache Level Identification Register
Cache Size Selection Register

0c01
1
02 c0

†

† See description of cache operations for 
implemented CRm and Opcode_2 values

ATCM Region Register1
c9 0
c0 20

0
c0

BTCM Region Register
TCM Type Register

CRn CRmOpcode_1 Opcode_2

TCM Selection Register0

Write-only Accessible in User modeRead-only Read/write

c1

c2
Slave Port Control Register0c11 0 c0

c15 10 c0
2
3

AXI peripheral interface region register
Virtual AXI peripheral interface region register
AHB peripheral interface region register
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-4
ID092411 Non-Confidential



System Control 
Figure 4-5 System performance monitor registers

System performance monitoring counts system events, such as cache misses, pipeline stalls, and 
other related features to enable system developers to profile the performance of their systems. 
It can generate interrupts when the number of events reaches a given value. 

For more information on the programmers model of the performance counters, see the ARM 
Architecture Reference Manual. See Chapter 6 Events and Performance Monitor for more 
information on the registers.

4.1.6 System validation

The system validation registers extend the use of the system performance monitor registers to 
provide some functions for validation. You must not use them for other purposes. The system 
validation registers schedule and clear:
• resets
• interrupts
• fast interrupts
• external debug requests.

The system validation registers consist of nine read/write registers and one write-only register. 
Figure 4-6 shows the arrangement of registers.

Figure 4-6 System validation registers

Opcode_2CRmCRn Opcode_1

c9 00 c12

Overflow Flag Status Register †

Count Enable Set Register †
Count Enable Clear Register †

Performance Monitor Control Register †

Event Select Register †

Performance Counter Selection Register †
Cycle Count Register †

Software Increment Register †

Interrupt Enable Clear Register

User Enable Register
Interrupt Enable Set Register

Performance Count Register †

1
2
3
4
5
0c13
1
2

0

0
1
2

c140

Write-only Accessible in User modeRead-only Read/write
† If enabled in User 

Enable Register

0c15
Opcode_2Opcode_1 CRmCRn

0

1
nVAL IRQ Enable Set Register †
nVAL FIQ Enable Set Register † 
nVAL Reset Enable Set Register † 
nVAL Debug Request Enable Set Register †
nVAL IRQ Enable Clear Register †
nVAL FIQ Enable Clear Register †

nVAL Debug Request Enable Clear Register †
Cache size override register

nVAL Reset Enable Clear Register † 

Write-only Accessible in User modeRead-only Read/write
† If enabled in User 

Enable Register

c1

2
3
4
5
6
7

c14

0

0

ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-5
ID092411 Non-Confidential



System Control 
You can only change the cache size to a size supported by the cache RAMs implemented in your 
design.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-6
ID092411 Non-Confidential



System Control 
4.2 Register summary
The system control coprocessor is a set of registers that you can write to and read from. Some 
of the registers permit more than one type of operation. The functional groups for the registers 
are:
• System control and configuration on page 4-2
• MPU control and configuration on page 4-3
• Cache control and configuration on page 4-3
• Interface control and configuration on page 4-4
• System performance monitor on page 4-4
• System validation on page 4-5.

Table 4-1 shows the overall functionality for the system control coprocessor, provided through 
the registers. The registers are listed in their functional groups.

Table 4-2 on page 4-9 lists the registers in the system control processor, in register order, and 
gives the reset value for each register.

Table 4-1 System control coprocessor register functions

Function Register/operation Reference to description

System identification, 
control and configuration 

Control c1, System Control Register on page 4-38

Auxiliary control c1, Auxiliary Control Register on page 4-41

Coprocessor Access Control c1, Coprocessor Access Control Register on page 4-47

Secondary Auxiliary Control Register c15, Secondary Auxiliary Control Register on page 4-44

Main IDa c0, Main ID Register on page 4-14

Auxiliary ID Register c0, Auxiliary ID Register on page 4-37

Product Feature IDs The Processor Feature Registers on page 4-19
c0, Debug Feature Register 0 on page 4-21
c0, Auxiliary Feature Register 0 on page 4-22
Memory Model Feature Registers on page 4-22
Instruction Set Attributes Registers on page 4-27

Multiprocessor ID c0, Multiprocessor Affinity Register on page 4-18

Context ID c13, Context ID Register on page 4-66

FCSE PID c13, FCSE PID Register on page 4-66

Pin Options Register Pin Options Register on page 4-83

Build Options Registers c15, Build Options 1 Register on page 4-79

c15, Build Options 2 Register on page 4-80

Software compatibility Thread And Process ID c13, Thread and Process ID Registers on page 4-67
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-7
ID092411 Non-Confidential



System Control 
MPU control and 
configuration

Data Fault Status c5, Data Fault Status Register on page 4-49

Auxiliary Fault Status c5, Auxiliary Fault Status Registers on page 4-51

Instruction Fault Status c5, Instruction Fault Status Register on page 4-50

Instruction Fault Address c6, Instruction Fault Address Register on page 4-53

Data Fault Address c6, Data Fault Address Register on page 4-53

MPU Type c0, MPU Type Register on page 4-17

Region Base Address c6, MPU Region Base Address Registers on page 4-54

Region Size and Enable c6, MPU Region Size and Enable Registers on page 4-55

Region Access Control c6, MPU Region Access Control Registers on page 4-56

Memory Region Number c6, MPU Region Number Register on page 4-59

Correctable Fault Location Register Correctable Fault Location Register on page 4-77

Cache control and 
configuration

Cache Type c0, Cache Type Register on page 4-15

Current Cache Size Identification c0, Cache Size ID Register on page 4-34

Current Cache Level c0, Cache Level ID Register on page 4-36

Cache Size Selection c0, Cache Size Selection Register on page 4-37

c7, Cache Operations Cache operations on page 4-60

c15, Invalidate all data cache

Interface control and 
configuration

TCM Status c0, TCM Type Register on page 4-16

Region c9, BTCM Region Register on page 4-63
c9, ATCM Region Register on page 4-64
c9, TCM Selection Register on page 4-65

Slave Port Control c11, Slave Port Control Register on page 4-65

Peripheral Port Region Registers. Peripheral interface region registers on page 4-84

System performance 
monitoring

Performance monitoring Chapter 6 Events and Performance Monitor

Validation System validation Validation Registers on page 4-68

a. Known as the ID Code Register on previous designs. Returns the device ID code.

Table 4-1 System control coprocessor register functions (continued)

Function Register/operation Reference to description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-8
ID092411 Non-Confidential



System Control 
4.3 Register descriptions
This section describes all of the registers in the system control coprocessor. The section presents 
a summary of the registers and descriptions in register order of CRn, Opcode_1, CRm, 
Opcode_2. 

For more information on using the system control coprocessor and the general method of how 
to access CP15 registers, see the ARM Architecture Reference Manual.

4.3.1 Register allocation

Table 4-2 shows a summary of address allocation and reset values for the registers in the system 
control coprocessor where:
• CRn is the register number within CP15
• Op1 is the Opcode_1 value for the register
• CRm is the operational register
• Op2 is the Opcode_2 value for the register.

Table 4-2 Summary of CP15 registers and operations

CRn Op1 CRm Op2 Register or operation Type Reset value Page

c0 0 c0 {0, 3, 6-7} Main ID Read-only 0x41xFC15xa page 4-14

1 Cache Type Read-only 0x8003C003 page 4-15

2 TCM Type Read-only 0x00010001 page 4-16

4 MPU Type Read-only -b page 4-17

5 Multiprocessor Affinity Read-only -d page 4-18

c1 0 Processor Feature 0 Read-only 0x00000131 page 4-19

1 Processor Feature 1 Read-only 0x00000001 page 4-20

2 Debug Feature 0 Read-only 0x00010400 page 4-21

3 Auxiliary Feature 0 Read-only 0x00000000 page 4-22

4 Memory Model Feature 0 Read-only 0x00210030 page 4-22

5 Memory Model Feature 1 Read-only 0x00000000 page 4-23

6 Memory Model Feature 2 Read-only 0x01200000 page 4-24

7 Memory Model Feature 3 Read-only 0x00000211 page 4-26

c2 0 Instruction Set Attributes 0 Read-only 0x01101111 page 4-27

c2 1 Instruction Set Attributes 1 Read-only 0x13112111 page 4-28

2 Instruction Set Attributes 2 Read-only 0x21232131 page 4-30

3 Instruction Set Attributes 3 Read-only 0x01112131 page 4-31

4 Instruction Set Attributes 4 Read-only 0x00010142 page 4-33

5 Instruction Set Attributes 5 Read-only 0x00000000 page 4-34

6-7 Reserved, Read As Zero (RAZ) Read-only 0x00000000 page 4-34

c3-c7 0-7 Reserved, RAZ Read-only 0x00000000 -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-9
ID092411 Non-Confidential



System Control 
c8-c15 0-7 Undefined - - -

1 c0 0 Current Cache Size ID Read-only -cd page 4-34

1 Current Cache Level ID Read-only -c page 4-36

2-6 Undefined - - -

7 Auxiliary ID Read-only 0x00000000 page 4-37

c1-c15 0-7 Undefined - - -

2 c0 0 Cache Size Selection Read/write Unpredictable page 4-37

c1 0 c0 0 System Control Read/write -d page 4-38

1 Auxiliary Control Read/write -d page 4-41

2 Coprocessor Access Read/write 0x00000000 page 4-47

3-7 Undefined - - -

c1-c15 0-7

c2-c4 0 c0-c15 0-7

c5 0 c0 0 Data Fault Status Read/write Unpredictable page 4-49

1 Instruction Fault Status Read/write Unpredictable page 4-50

2-7 Undefined - - -

c1 0 Auxiliary Data Fault Status Read/write Unpredictable page 4-51

c1 1 Auxiliary Instruction Fault Status Read/write Unpredictable page 4-51

2-7 Undefined - - -

c2-c15 0-7

c6 0 c0 0 Data Fault Address Read/write Unpredictable page 4-53

1 Undefined - - -

2 Instruction Fault Address Read/write Unpredictable page 4-53

3-7 Undefined - - -

c1 0 MPU Region Base Address Read/write 0x00000000 page 4-54

1 Undefined - - -

2 MPU Region Size and Enable Read/write 0x00000000 page 4-55

3 Undefined - - -

4 MPU Region Access Control Read/write 0x00000000 page 4-56

5-7 Undefined - - -

c2 0 MPU Memory Region Number Read/write 0x00000000 page 4-59

1-7 Undefined - - -

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-10
ID092411 Non-Confidential



System Control 
c3-c15 1-7

c7 0 c0 0-3 Undefined - - -

4 NOP, previously Wait For Interrupt Write-only - page 4-60

5-7 Undefined - - -

c1-c4 0-7

c5 0 Invalidate entire instruction cache Write-only - page 4-61

c5 1 Invalidate instruction cache line by 
address to Point-of-Unification.

Write-only - page 4-61

2-3 Undefined - - -

4 Instruction Synchronization Barrier Write-only - page 4-61

5 Undefined - - -

6 Invalidate entire branch predictor array 
(NOP)

Write-only - page 4-61

7 Invalidate address from branch predictor 
array (NOP)

Write-only - page 4-61

c6 0 Undefined - - -

1 Invalidate data cache line by physical 
address

Write-only - page 4-61

2 Invalidate data cache line by Set/Way Write-only - page 4-61

3-7 Undefined - - -

c7-9 0-7

c10 0

1 Clean data cache line by physical 
address

Write-only - page 4-61

2 Clean data cache line by Set/Way Write-only - page 4-61

3 Undefined - - -

4 Data Synchronization Barrier Write-only - page 4-63

5 Data Memory Barrier Write-only - page 4-63

6-7 Undefined - - -

c11 0

c11 1 Clean data cache line by physical 
address to Point-of-Unification

Write-only - page 4-61

2-7 Undefined - - -

c12 0-7

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-11
ID092411 Non-Confidential



System Control 
c13 0

1 NOP Write-only - -

2-7 Undefined - - -

c14 0

1 Clean and invalidate data cache line by 
physical address to Point-of-Unification

Write-only - page 4-61

c14 2 Clean and invalidate data cache line by 
Set/Way

Write-only - page 4-61

3-7 Undefined - - -

c15 0-7

c8 0 c0-c15 0-7 Undefined - - -

c9 0 c0 0-7 Undefined - - -

c1 0 BTCM Region Read/write -d page 4-63

1 ATCM Region Read/write -d page 4-63

2-7 Undefined - - -

c2 0 TCM selection Read/write 0x00000000 page 4-65

1-7 Undefined - - -

c3-c11 0-7

c12 0 Performance Monitor Control Read/write 0x41151800 page 6-7

1 Count Enable Set Read/write Unpredictable page 6-8

2 Count Enable Clear Read/write Unpredictable page 6-9

3 Overflow Flag Status Read/write Unpredictable page 6-11

4 Software Increment Write-only - page 6-12

c12 5 Performance Counter Selection Read/write Unpredictable page 6-12

6-7 Undefined - - -

c13 0 Cycle Count Read/write 0x00000000 page 6-13

1 Event Select Read/write Unpredictable page 6-14

2 Performance Monitor Count Read/write 0x00000000 page 6-16

3-7 Undefined - - -

c14 0 User Enable Read/write 0x00000000 page 6-16

1 Interrupt Enable Set Read/write Unpredictable page 6-17

c14 2 Interrupt Enable Clear Read/write Unpredictable page 6-18

3-7 Undefined - - -

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-12
ID092411 Non-Confidential



System Control 
c15 0-7

c10 0 c0-c15 0-7 Undefined - - -

c11 0 c0 0 Slave Port Control Read/write 0x00000000 page 4-65

c0 1-7 Undefined - - -

c1-c15 0-7

c12 0 c0-c15 0-7

c13 0 c0 0 FCSE PID RAZ, ignore 
writes

0x00000000 page 4-66

1 Context ID Read/write 0x00000000 page 4-66

2 User read/write Thread and Process ID Read/write 0x00000000 page 4-67

3 User Read-only Thread and Process ID Read/write 0x00000000 page 4-67

4 Privileged Only Thread and Process ID Read/write 0x00000000 page 4-67

5-7 Undefined - - -

c1-c15 0-7 Undefined - - -

c14 0 c0-c15 0-7

c15 0 c0 0 Secondary Auxiliary Control Read/write -d page 4-44

1 Normal AXI Peripheral Interface 
Region 

Read/write -d page 4-84

2 Virtual AXI Peripheral Interface Region Read/write 0 page 4-84

3 AHB Peripheral Interface Region Read/write -d page 4-84

4-7 Undefined - - -

c1 0 nVAL IRQ Enable Set Read/write Unpredictable page 4-68

1 nVAL FIQ Enable Set Read/write Unpredictable page 4-69

2 nVAL Reset Enable Set Read/write Unpredictable page 4-70

3 nVAL Debug Request Enable Set Read/write Unpredictable page 4-71

4 nVAL IRQ Enable Clear Read/write Unpredictable page 4-72

5 nVAL FIQ Enable Clear Read/write Unpredictable page 4-73

6 nVAL Reset Enable Clear Read/write Unpredictable page 4-74

7 nVAL Debug Request Enable Clear Read/write Unpredictable page 4-75

c2 0 Build Options 1 Read-only -d page 4-79

1 Build Options 2 Read-only -d page 4-80

2-6 Undefined - - -

7 Pin Options Read-only -d page 4-83

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-13
ID092411 Non-Confidential



System Control 
4.3.2 c0, Main ID Register

The MIDR characteristics are:

Purpose Returns the device ID code that contains information about the processor

Usage constraints The MIDR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-3 on page 4-15.

Figure 4-7 shows the shows the MIDR bit assignments.

Figure 4-7 MIDR bit assignments

c3 0 Correctable Fault Location Read/write Unpredictable page 4-77

c3 1-7 Undefined - - -

c4 0-7

c5 0 Invalidate all data cache Write-only - page 4-61

1-7 Undefined - - -

c6-c13 0-7

c14 0 Cache Size Override Write-only - page 4-76

1-7 Undefined - - -

c15 0-7

a. The value of bits [23:20,3:0] of the MIDR depend on product revision. See the register description for more information.
b. Reset value depends on number of MPU regions.
c. Reset value depends on which caches are implemented and their sizes.
d. See register description for more information.

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page

VariantImplementor

31 23 20 19 16 15 4 3 0

Architecture Primary part number Revision

24
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-14
ID092411 Non-Confidential



System Control 
Table 4-3 shows the MIDR bit assignments.

Note
 If an MRC instruction is executed with CRn = c0, Opcode_1 = 0, CRm = c0, and an Opcode_2 
value corresponding to an unimplemented or reserved ID register, the system control 
coprocessor returns the value of the MIDR.

To access the MIDR, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 0 ; Read MIDR

For more information on the processor features, see The Processor Feature Registers on 
page 4-19.

4.3.3 c0, Cache Type Register

The CTR characteristics are:

Purpose Determines the instruction and data minimum line length in bytes, to 
enable a range of addresses to be invalidated.

Usage constraints The CTR is:
• a read-only register 
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-4 on page 4-16.

Figure 4-8 shows the CTR bit assignments.

Figure 4-8 CTR bit assignments

Table 4-3 MIDR bit assignments

Bits Name Function

[31:24] Implementer Indicates implementer.
0x41 = ARM Limited.

[23:20] Variant Identifies the major revision of the processor. This is the major revision number n in the rn part of 
the rnpn description of the product revision status. 

[19:16] Architecture Indicates the architecture version.
0xF = see feature registers.

[15:4] Primary part number Indicates processor part number.
0xC15 = Cortex-R5.

[3:0] Revision Identifies the minor revision of the processor. This is the minor revision number n in the pn part of 
the rnpn description of the product revision status. 

1CWG ERG IMinLineReserved

31 0

DMinLine 1

3413141516192028 27

Reserved

24 23
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-15
ID092411 Non-Confidential



System Control 
Table 4-4 shows the CTR bit assignments.

To access the CTR, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 1 ; Read CTR

4.3.4 c0, TCM Type Register

The TCMTR characteristics are:

Purpose Informs the processor of the number of ATCMs and BTCMs in the system

Usage constraints The TCMTR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-5 on page 4-17.

Figure 4-9 shows the TCMTR bit assignments.

Figure 4-9 TCMTR bit assignments

Table 4-4 CTR bit assignments

Bits Name Function

[31:28] - Always b1000.

[27:24] CWG Cache Write-back Granule
0x0 = No information provided. See maximum cache line size in c0, Cache Size ID Register on page 4-34.

[23:20] ERG Exclusives Reservation Granule
0x0 = No information provided.

[19:16] DMinLine Indicates log2 of the number of words in the smallest cache line of the data and unified caches controlled 
by the processor:
0x3 = Eight words in an L1 data cache line.

[15:14] - Always 0x3.

[13: 4] - Always 0x000.

[3: 0] IMinLine Indicates log2 of the number of words in the smallest cache line of the instruction caches controlled by the 
processor:
0x3 - Eight words in an L1 instruction cache line.

0

31 30 29 28 19 18 16 15 3 2 0

0 0 Reserved BTCM Reserved ATCM
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-16
ID092411 Non-Confidential



System Control 
Table 4-5 shows the TCMTR bit assignments.

To access the TCMTR, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 2 ; Returns TCMTR

Note
 • The ATCM and BTCM fields in the TCMTR occupy the same space respectively as the 

ITCM and DTCM fields as defined by the ARM architecture. These fields, and the 
corresponding TCM interfaces, can be considered equivalent to those defined in the 
architecture.

• The ARM architecture requires only the ITCM to be accessible from both instruction and 
data sides. In the Cortex-R5 processor, both ATCM and BTCM are accessible from both 
instruction and data sides.

4.3.5 c0, MPU Type Register

The MPUIR characteristics are:

Purpose Holds the value for the number of instruction and data memory regions 
implemented in the processor. 

Usage constraints The MPUIR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-6 on page 4-18.

Figure 4-10 shows the MPUIR bit assignments.

Figure 4-10 MPUIR bit assignments

Table 4-5 TCMTR bit assignments

Bits Name Function

[31:29] - Always 0, indicating v6 format TCMTR.

[28:19] - SBZ.

[18:16] BTCM Specifies the number of BTCMs implemented. This is always set to b001 because the processor has one BTCM.

[15:3] - SBZ.

[2:0] ATCM Specifies the number of ATCMs implemented. Always set to b001. The processor has one ATCM.

SReserved

31 16 8 7 1 0

ReservedDRegion
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-17
ID092411 Non-Confidential



System Control 
Table 4-6 shows the MPUIR bit assignments.

To access the MPUIR, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 4 ; Read MPUIR

4.3.6 c0, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose Enables CPUs to be recognized and characterized within a twin-CPU 
system.

Usage constraints The MPIDR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-7.

Figure 4-11 shows the MPIDR bit assignments.

Figure 4-11 MPIDR bit assignments

Table 4-7 shows the MPIDR bit assignments.

Table 4-6 MPUIR bit assignments

Bits Name Function

[31:16] - SBZ.

[15:8] DRegion Specifies the number of unified MPU regions. Set to 0, 12, or 16 data MPU regions.

[7:1] - SBZ.

[0] S Specifies the type of MPU regions, unified or separate, in the processor. 
Always set to 0, the processor has unified memory regions.

Affinity Level 2Reserved

31 16 8 7 0

Affinity Level 0Affinity Level 1

24 2330 29

Multiprocessor extensions

Table 4-7 MPIDR bit assignments

Bits Name Function

[31:30] - Multiprocessing extensions:
0b00 = no multiprocessing extensions, applies to Cortex-R5, r0p0
0b11 = processor is part of a uniprocessor system, applies to Cortex-R5, from r1p0.

[29:24] - SBZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-18
ID092411 Non-Confidential



System Control 
To access the MPIDR, read CP15 with:

MRC p15, 0, <Rt>, c0, c0, 5 ; Read MPIDR

4.3.7 The Processor Feature Registers

There are two Processor Feature Registers, PFR0 and PFR1. This section describes:
• c0, Processor Feature Register 0
• c0, Processor Feature Register 1 on page 4-20.

c0, Processor Feature Register 0

The PFR0 characteristics are:

Purpose Provides information about the execution state support and programmers 
model for the processor.

Usage constraints PFR0 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-8.

Figure 4-12 shows the PFR0 bit assignments.

Figure 4-12 PFR0 bit assignments

Table 4-8 shows the PFR0 bit assignments.

[23:16] Aff2 0x00.

[15:8] Aff1 Processor groups within a system. Read GROUPID input.

[7:0] Aff0 Processors within a group:
0x0 = CPU0
0x1 = CPU1, if implemented.

Table 4-7 MPIDR bit assignments (continued)

Bits Name Function

Reserved State3

31 16 15 8 7 3 0

State2 State1 State0

41112

Table 4-8 PFR0 bit assignments

Bits Name Function

[31:16] - SBZ.

[15:12] State3 Indicates support for Thumb Execution Environment (ThumbEE).
0x0 = no support.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-19
ID092411 Non-Confidential



System Control 
To access PFR0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 0 ; Read PFR0

c0, Processor Feature Register 1

The PFR1 characteristics are:

Purpose Provides information about the execution state support and programmers 
model for the processor.

Usage constraints PFR1 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-9.

Figure 4-13 shows the PFR1 bit assignments.

Figure 4-13 PFR1 bit assignments

Table 4-9 shows the PFR1 bit assignments.

[11:8] State2 Indicates support for acceleration of execution environments in hardware or software.
0x1 = the processor supports acceleration of execution environments in software.

[7:4] State1 Indicates type of Thumb encoding that the processor supports.
0x3 = the processor supports Thumb encoding with all Thumb instructions.

[3:0] State0 Indicates support for ARM instruction set.
0x1 = the processor supports ARM instructions.

Table 4-8 PFR0 bit assignments (continued)

Bits Name Function

31 12 11 8 7 4 3 0

Reserved

Microcontroller programmers model
Security extension

ARMv4 programmers model

Table 4-9 PFR1 bit assignments

Bits Name Function

[31:12] - SBZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-20
ID092411 Non-Confidential



System Control 
To access the PFR1 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 1 ; Read PFR1

4.3.8 c0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose Provides information about the debug system for the processor.

Usage constraints ID_DFR0 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-10.

Figure 4-14 shows the ID_DFR0 bit assignments.

Figure 4-14 ID_DFR0 bit assignments

Table 4-10 shows the ID_DFR0 bit assignments.

[11:8] Microcontroller programmers model Indicates support for Microcontroller programmers model:
0x0 = no support.

[7:4] Security extension Indicates support for Security Extensions architecture:
0x0 = no support.

[3:0] ARMv4 programmers model Indicates support for standard ARMv4 programmers model:
0x1 = the processor supports the ARMv4 model.

Table 4-9 PFR1 bit assignments (continued)

Bits Name Function

Reserved

Microcontroller debug model – memory mapped
Trace debug model – memory mapped

Trace debug model – coprocessor
Core debug model – memory mapped

Core debug model – coprocessor
Secure debug model

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Table 4-10 ID_DFR0 bit assignments

Bits Name Function

[31:24] - SBZ.

[23:20] Microcontroller Debug 
model - memory mapped

Indicates support for the microcontroller debug model - memory mapped:
0x0 = no support.

[19:16] Trace debug model - 
memory mapped

Indicates support for the trace debug model - memory mapped:
0x1 = trace supported, memory mapped access.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-21
ID092411 Non-Confidential



System Control 
To access the ID_DFR0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 2 ; Read ID_DFR0

4.3.9 c0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose Provides additional information about the features of the processor.

Usage constraints The ID_AFR0 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes In this processor, the ID_AFR0 reads as 0x00000000.

To access the ID_AFR0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 3 ; Read ID_AFR0

4.3.10 Memory Model Feature Registers

There are four Memory Model Feature Registers, MMFR0 to MMFR3. They are described in 
the following subsections:
• c0, Memory Model Feature Register 0
• c0, Memory Model Feature Register 1 on page 4-23
• c0, Memory Model Feature Register 2 on page 4-24
• c0, Memory Model Feature Register 3, MMFR3 on page 4-26.

c0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose The ID_MMFR0 provides information about the memory model, memory 
management, and cache support operations of the processor.

Usage constraints The ID_MMFR0 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

[15:12] Trace debug model - 
coprocessor

Indicates support for the trace debug model - coprocessor:
0x0 = no support.

[11:8] Core debug model - 
memory mapped

Indicates the type of embedded processor debug model that the processor supports:
0x4 = ARMv7 based model - memory mapped.

[7:4] Secure debug model Indicates the type of secure debug model that the processor supports:
0x0 = no support.

[3:0] Core debug model - 
coprocessor

Indicates the type of applications processor debug model that the processor supports:
0x0 = no support.

Table 4-10 ID_DFR0 bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-22
ID092411 Non-Confidential



System Control 
Attributes See Table 4-11.

Figure 4-15 shows the ID_MMFR0 bit assignments.

Figure 4-15 ID_MMFR0 bit assignments

Table 4-11 shows the ID_MMFR0 bit assignments.

To access the ID_MMFR0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 4 ; Read ID_MMFR0

c0, Memory Model Feature Register 1

The ID_MMFR1 Register characteristics are:

Purpose Provides information about the memory model, memory management, 
and cache support of the processor.

Usage constraints The ID_MMFR1 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-12 on page 4-24.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Innermost 
shareability FCSE TCM 

support PMSA VMSAAuxiliary 
Registers

Outermost 
shareability

Shareability 
levels

Table 4-11 ID_MMFR0 bit assignments

Bits Name Function

[31:28] Innermost shareability Indicates the innermost shareability domain implemented.
RAZ/Unknown because only one shareability domain is implemented, see [15:12].

[27:24] FCSE Indicates support for Fast Context Switch Extension (FCSE).
0x0 = no support.

[23:20] Auxiliary Registers Indicates support for the auxiliary registers.
0x2 = the processor supports the Auxiliary Instruction and Data Fault Status Registers (AIFSR 
and ADFSR) and the Auxiliary Control Register.

[19:16] TCM support Indicates support for TCM and associated DMA.
0x1 = implementation defined.

[15:12] Shareability levels Indicates the number of shareability levels implemented.
0x0 = one level of shareability implemented

[11:8] Outermost shareability Indicates the outermost shareability domain implemented.
0x0 = implemented as non-cacheable

[7:4] PMSA Indicates support for Physical Memory System Architecture (PMSA).
0x3 = the processor supports PMSAv7 (subsection support).

[3:0] VMSA Indicates support for Virtual Memory System Architecture (VMSA).
0x0 = no support.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-23
ID092411 Non-Confidential



System Control 
Figure 4-16 shows the ID_MMFR1 bit assignments.

Figure 4-16 ID_MMFR1 bit assignments

Table 4-12 shows the ID_MMFR1 bit assignments.

To access the ID_MMFR1 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 5 ; Read ID_MMFR1

c0, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose The ID_MMFR2 provides information about the memory model, memory 
management, and cache support operations of the processor.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

L1 test clean operations
L1 cache maintenance operations (unified)

L1 cache maintenance operations (Harvard)
L1 cache line maintenance operations - Set and Way (unified)

L1 cache line maintenance operations - Set and Way (Harvard)
L1 cache line maintenance operations - MVA (unified)

L1 cache line maintenance operations - MVA (Harvard)

Branch predictor

Table 4-12 ID_MMFR1 bit assignments

Bits Name Function

[31:28] Branch predictor Indicates Branch Predictor management requirements.
0x0 = no MMU present.

[27:24] L1 test clean operations Indicates support for test and clean operations on data cache, Harvard or unified architecture.
0x0 = no support. 

[23:20] L1 cache maintenance 
operations (unified)

Indicates support for L1 cache, entire cache maintenance operations, unified architecture.
0x0 = no support.

[19:16] L1 cache maintenance 
operations (Harvard)

Indicates support for L1 cache, entire cache maintenance operations, Harvard architecture.
0x0 = no support.

[15:12] L1 cache line maintenance 
operations - Set and Way 
(unified)

Indicates support for L1 cache line maintenance operations by Set and Way, unified 
architecture.
0x0 = no support.

[11:8] L1 cache line maintenance 
operations - Set and Way 
(Harvard)

Indicates support for L1 cache line maintenance operations by Set and Way, Harvard 
architecture.
0x0 = no support.

[7:4] L1 cache line maintenance 
operations - MVA (unified)

Indicates support for L1 cache line maintenance operations by address, unified architecture.
0x0 = no support.

[3:0] L1 cache line maintenance 
operations - MVA 
(Harvard)

Indicates support for L1 cache line maintenance operations by address, Harvard architecture.
0x0 = no support.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-24
ID092411 Non-Confidential



System Control 
Usage constraints The ID_MMFR2 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-13.

Figure 4-17 shows the ID_MMFR2 bit assignments.

Figure 4-17 ID_MMFR2 bit assignments

Table 4-13 shows the ID_MMFR2 bit assignments.

To access the ID_MMFR2 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 6 ; Read ID_MMFR2

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Hardware 
access flag WFI Memory 

barrier

TLB maintenance operations (unified)
TLB maintenance operations (Harvard)

L1 cache maintenance range operations (Harvard)
L1 background prefetch cache operations
L1 foreground prefetch cache operations

Table 4-13 ID_MMFR2 bit assignments

Bits Name Function

[31:28] Hardware access flag Indicates support for Hardware Access Flag.
0x0 = no support.

[27:24] WFI Indicates support for Wait-For-Interrupt stalling.
0x1 = the processor supports Wait-For-Interrupt.

[23:20] Memory barrier Indicates support for memory barrier operations.
0x2, = he processor supports:
• DSB (formerly DWB)
• ISB (formerly Prefetch Flush)
• DMB.

[19:16] TLB maintenance 
operations (unified)

Indicates support for TLB maintenance operations, unified architecture.
0x0 = no support.

[15:12] TLB maintenance 
operations (Harvard)

Indicates support for TLB maintenance operations, Harvard architecture.
0x0 = no support.

[11:8] L1 cache maintenance 
range operations (Harvard)

Indicates support for cache maintenance range operations, Harvard architecture.
0x0 = no support.

[7:4] L1 background prefetch 
cache operations

Indicates support for background prefetch cache range operations, Harvard architecture.
0x0 = no support.

[3:0] L1 foreground prefetch 
cache operations

Indicates support for foreground prefetch cache range operations, Harvard architecture.
0x0 = no support.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-25
ID092411 Non-Confidential



System Control 
c0, Memory Model Feature Register 3, MMFR3

The ID_MMFR3 characteristics are:

Purpose Provides information about the two cache line maintenance operations for 
the processor.

Usage constraints The ID_MMFR3 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-14.

Figure 4-18 shows the ID_MMFR3 bit assignments.

Figure 4-18 ID_MMFR3 bit assignments

Table 4-14 shows the ID_MMFR3 bit assignments.

Reserved Reserved

31 8 7 3 0412 11

Branch predictor maintenance operations
Hierarchical cache maintenance operations by Set and Way  

Hierarchical cache maintenance operations by MVA

16 1520 1924 2328 27

Maintenance broadcast

Supersection support
Coherent walk

Table 4-14 ID_MMFR3 bit assignments

Bits Name Function

[31:28] Supersection support RAZ because this is a PMSA implementation.

[27:24] - SBZ

[23:20] Coherent walk RAZ because this is a PMSA implementation.

[19:16] - SBZ

[15:12] Maintenance broadcast Indicates whether cache maintenance operations are broadcast.
0x0 = cache maintenance operations only affect local structures.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-26
ID092411 Non-Confidential



System Control 
To access the ID_MMFR3 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 7 ; Read ID_MMFR3

4.3.11 Instruction Set Attributes Registers

There are eight Instruction Set Attributes Registers, ID_ISAR0 to ID_ISAR7, but three of these 
are unused. This section describes:
• c0, Instruction Set Attributes Register 0
• c0, Instruction Set Attributes Register 1 on page 4-28
• c0, Instruction Set Attributes Register 2 on page 4-30
• c0, Instruction Set Attributes Register 3 on page 4-31
• c0, Instruction Set Attributes Register 4 on page 4-33
• c0, Instruction Set Attributes Register 5 on page 4-34.
• c0, Instruction Set Attributes Registers 6-7 on page 4-34.

c0, Instruction Set Attributes Register 0

The ID_ISAR0 characteristics are:

Purpose Provides information about the instruction set that the processor supports, 
beyond the basic set.

Usage constraints The ID_ISAR0 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-15 on page 4-28.

Figure 4-19 on page 4-28 shows the ID_ISAR0 bit assignments.

[11:8] Branch predictor maintenance 
operations

Indicates support for branch predictor maintenance operations in systems with 
hierarchical cache maintenance operations.
0x2 = supports invalidate entire branch predictor array and invalidate branch predictor 
by MVAa.

[7:4] Hierarchical cache maintenance
operations by Set and Way

Indicates support for hierarchical cache maintenance operations by Set and Way.
0x1 = the processor supports invalidate cache, clean and invalidate, and clean by Set and 
Way.

[3:0] Hierarchical cache maintenance 
operations by MVA

Indicates support for hierarchical cache maintenance operations by address.
0x1 = the processor supports:
• Invalidate data cache by address
• Clean data cache by address
• Clean and invalidate data cache by address
• Invalidate instruction cache by address
• Invalidate all instruction cache entries.

a. Both of these operations are NOP on Cortex-R5.

Table 4-14 ID_MMFR3 bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-27
ID092411 Non-Confidential



System Control 
Figure 4-19 ID_ISAR0 bit assignments

Table 4-15 shows the ID_ISAR0 bit assignments.

To access the ID_ISAR0, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 0 ; Read ID_ISAR0

c0, Instruction Set Attributes Register 1

The ID_ISAR1 characteristics are:

Purpose Provides information about the instruction set that the processor supports 
beyond the basic set.

Usage constraints The ID_ISAR1 is:
• a read-only register
• accessible in Privileged mode only.

Reserved

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Divide instructions
Debug instructions

Coprocessor instructions
Compare and branch instructions

Bitfield instructions
Bit count instructions

Atomic instructions

Table 4-15 ID_ISAR0 bit assignments

Bits Name Function

[31:28] - SBZ

[27:24] Divide instructions Indicates support for divide instructions.
0x1 = Support for UDIV and SDIV in the Thumb ISA. Applies to Cortex-R5, r0p0.
0x2 = Support for UDIV and SDIV in the ARM and Thumb ISA. Applies from Cortex-R5, r1p0.

[23:20] Debug instructions Indicates support for debug instructions.
0x1 = the processor supports BKPT.

[19:16] Coprocessor instructions Indicates support for coprocessor instructions other than separately attributed feature registers, 
such as CP15 registers and VFP.
0x0 = no support.

[15:12] Compare and branch 
instructions

Indicates support for combined compare and branch instructions.
0x1 = the processor supports combined compare and branch instructions, CBNZ and CBZ.

[11:8] Bitfield instructions Indicates support for bitfield instructions.
0x1 = the processor supports bitfield instructions, BFC, BFI, SBFX, and UBFX.

[7:4] Bit counting instructions Indicates support for bit counting instructions.
0x1 = the processor supports CLZ.

[3:0] Atomic instructions Indicates support for atomic load and store instructions.
0x1 = the processor supports SWP and SWPB.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-28
ID092411 Non-Confidential



System Control 
Configurations Available in all processor configurations.

Attributes See Table 4-16.

Figure 4-20 shows the ID_ISAR1 bit assignments.

Figure 4-20 ID_ISAR1 bit assignments

Table 4-16 shows the ID_ISAR1 bit assignments.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Jazelle instructions

Interworking instructions
Immediate instructions

ITE instructions
Extend instructions

Exception 2 instructions
Exception 1 instructions

Endian instructions

Table 4-16 ID_ISAR1 bit assignments

Bits Name Function

[31:28] Jazelle 
instructions

Indicates support for Jazelle instructions.
0x1 = the processor supports:
• BXJ instruction
• J bit in PSRs.
For more information see Program status registers on page 3-12 and Acceleration of execution 
environments on page 3-28.

[27:24] Interworking 
instructions

Indicates support for interworking instructions.
0x3 = the processor supports:
• BX, and T bit in PSRs
• BLX, and PC loads have BX behavior.
• Data-processing instructions in the ARM instruction set with the PC as the destination and the S bit 

clear have BX-like behavior.

[23:20] Immediate 
instructions

Indicates support for immediate instructions.
0x1 = the processor supports:
• the MOVT instruction
• MOV instruction encodings with 16-bit immediates
• Thumb ADD and SUB instructions with 12-bit immediates.

[19:16] ITE 
instructions

Indicates support for if then instructions.
0x1 = the processor supports IT instructions.

[15:12] Extend 
instructions

Indicates support for sign or zero extend instructions.
0x2 = the processor supports:
• SXTB, SXTB16, SXTH, UXTB, UXTB16, and UXTH
• SXTAB, SXTAB16, SXTAH, UXTAB, UXTAB16, and UXTAH.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-29
ID092411 Non-Confidential



System Control 
To access the ID_ISAR1 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 1 ; Read ID_ISAR1

c0, Instruction Set Attributes Register 2

The ID_ISAR2 is:
• a read-only register
• accessible in Privileged mode only.

The ID_ISAR2 characteristics are:

Purpose The ID_ISAR2 provides information about the instruction set that the 
processor supports beyond the basic set.

Usage constraints The ID_ISAR2 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-17 on page 4-31.

Figure 4-21 shows the ID_ISAR2 bit assignments.

Figure 4-21 ID_ISAR2 bit assignments

[11:8] Exception 2 
instructions

Indicates support for exception 2 instructions.
0x1 = the processor supports RFE, SRS, and CPS.

[7:4] Exception 1 
instructions

Indicates support for exception 1 instructions.
0x1 = the processor supports LDM (exception return), LDM (user registers), and STM (user registers).

[3:0] Endian 
instructions

Indicates support for endianness control instructions.
0x1 = the processor supports SETEND and E bit in PSRs.

Table 4-16 ID_ISAR1 bit assignments (continued)

Bits Name Function

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reversal instructions
PSR instructions

Unsigned multiply instructions
Signed multiply instructions

Multiply instructions
Interruptible instructions
Memory hint instructions

Load/store instructions
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-30
ID092411 Non-Confidential



System Control 
Table 4-17 shows the ID_ISAR2 bit assignments.

To access the ID_ISAR2 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 2 ; Read ID_ISAR2

c0, Instruction Set Attributes Register 3

The ID_ISAR3 characteristics are:

Purpose Provides information about the instruction set that the processor supports 
beyond the basic set.

Usage constraints The ID_ISAR3 is:
• a read-only registers
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-18 on page 4-32.

Figure 4-22 on page 4-32 shows the ID_ISAR3 bit assignments.

Table 4-17 ID_ISAR2 bit assignments

Bits Name Function

[31:28] Reversal 
instructions

Indicates support for reversal instructions.
0x2 = the processor supports REV, REV16, REVSH, and RBIT.

[27:24] PSR 
instructions

Indicates support for PSR instructions.
0x1 = the processor supports MRS and MSR, and the exception return forms of data-processing instructions.

[23:20] Unsigned 
multiply 
instructions

Indicates support for advanced unsigned multiply instructions.
0x2 = the processor supports:
• UMULL and UMLAL
• UMAAL.

[19:16] Signed 
multiply 
instructions

Indicates support for advanced signed multiply instructions.
0x3 = the processor supports:
• SMULL and SMLAL
• SMLABB, SMLABT, SMLALBB,SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, 

SMULTB, SMULTT, SMULWB, SMULWT, and Q flag in PSRs
• SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR, SMPUL, 

SMPULR, SMUAD, SMUADX, SMUSD, and SMUSDX.

[15:12] Multiply 
instructions

Indicates support for multiply instructions.
0x2 = the processor supports MUL, MLA, and MLS.

[11:8] Interruptible 
instructions

Indicates support for multi-access interruptible instructions.
0x1 = the processor supports restartable LDM and STM.

[7:4] Memory hint 
instructions

Indicates support for memory hint instructions.
0x3 = the processor supports PLD and PLI. Applies to Cortex-R5, r0p0
0x4 = the processor supports PLD, PLI and PLDW. Applies from Cortex-R5, r1p0

[3:0] Load/store 
instructions

Indicates support for additional load and store instructions.
0x1 = the processor supports LDRD and STRD.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-31
ID092411 Non-Confidential



System Control 
Figure 4-22 ID_ISAR3 bit assignments

Table 4-18 shows the ID_ISAR3 bit assignments.

To access the ID_ISAR3 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 3 ; Read ID_ISAR3

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ThumbEE extension
True NOP instructions

Thumb copy instructions
Table branch instructions

Synchronization primitive instructions
SVC instructions

SIMD instructions
Saturate instructions

Table 4-18 ID_ISAR3 bit assignments

Bits Name Function

[31:28] ThumbEE 
extension

Indicates support for ThumbEE Execution Environment extension.
0x0 = no support.

[27:24] True NOP 
instructions

Indicates support for true NOP instructions.
0x1 = the processor supports NOP16, NOP32 and various NOP compatible hints in both the ARM and Thumb 
instruction sets.

[23:20] Thumb copy 
instructions

Indicates support for Thumb copy instructions.
0x1 = the processor supports Thumb MOV(3) low register ⇒ low register.

[19:16] Table branch 
instructions

Indicates support for table branch instructions.
0x1 = the processor supports table branch instructions, TBB and TBH.

[15:12] Synchronization 
primitive 
instructions

Indicates support for synchronization primitive instructions.
0x2 = the processor supports:
• LDREX and STREX
• LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, and CLREX.

[11:8] SVC instructions Indicates support for SVC (formerly SWI) instructions.
0x1 = the processor supports SVC.

[7:4] SIMD 
instructions

Indicates support for Single Instruction Multiple Data (SIMD) instructions.
0x3 = the processor supports:
PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, 
SHSUB16, SHSUB8, SHSAX, SSAT, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, 
UHADD8, UASX, UHSUB16, UHSUB8, USAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT, 
USAT16, USUB16, USUB8, USAX, UXTAB16, UXTB16, and the GE[3:0] bits in the PSRs.

[3:0] Saturate 
instructions

Indicates support for saturate instructions.
0x1 = the processor supports QADD, QDADD, QDSUB, QSUB and Q flag in PSRs.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-32
ID092411 Non-Confidential



System Control 
c0, Instruction Set Attributes Register 4

The ID_ISAR4 characteristics are:

Purpose Provides information about the instruction set that the processor supports 
beyond the basic set.

Usage constraints The ID_ISAR4 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-19.

Figure 4-23 shows the ID_ISAR4 bit assignments.

Figure 4-23 ID_ISAR4 bit assignments

Table 4-19 shows the ID_ISAR4 bit assignments.

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Exclusive instructions
Barrier instructions SMC instructions

Write-back instructions
With shift instructions
Unprivileged instructions

28 27

SWP_frac

PSR_M_instrs

Table 4-19 ID_ISAR4 bit assignments

Bits Name Function

[31:28] SWP_frac RAZ because SWP/SWPB instruction support is indicated in ID_ISAR0.

[27:24] PSR_M_instrs Indicates support for M-profile instructions for modifying the PSRs.
0x0 = no support.

[23:20] Exclusive instructions Indicates support for Exclusive instructions. 
0x0 = Only supports synchronization primitive instructions as indicated by bits [15:12] in the 
ISAR3 register. See c0, Instruction Set Attributes Register 3 on page 4-31 for more 
information.

[19:16] Barrier instructions Indicates support for Barrier instructions. 
0x1 = the processor supports DMB, DSB, and ISB instructions.

[15:12] SMC instructions Indicates support for Secure Monitor Call (SMC) (formerly SMI) instructions.
0x0 = no support.

[11:8] Write-back instructions Indicates support for write-back instructions.
0x1 = supports all the writeback addressing modes defined in ARMv7.

[7:4] With shift instructions Indicates support for with-shift instructions.
0x4 = the processor supports:
• the full range of constant shift options, on load/store and other instructions
• register-controlled shift options.

[3:0] Unprivileged instructions Indicates support for Unprivileged instructions.
0x2 = the processor supports LDR{SB|B|SH|H}T and STR{B|H}T.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-33
ID092411 Non-Confidential



System Control 
To access the ID_ISAR4 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 4 ; Read ID_ISAR4

c0, Instruction Set Attributes Register 5

The ID_ISAR5 characteristics are:

Purpose Provides additional information about the properties of the processor.

Usage constraints ID_ISAR5 is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes In the processor, ID_ISAR5 is read as 0x00000000.

To access the ID_ISAR5, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 5 ; Read Instruction Set Attribute Register 5

c0, Instruction Set Attributes Registers 6-7

ID_ISAR6 and ID_ISAR7 are not implemented, and their positions in the register map are 
Reserved. They correspond to CP15 accesses with:

MRC p15, 0, <Rd>, c0, c2, 6 ; Read ID_ISAR6
MRC p15, 0, <Rd>, c0, c2, 7 ; Read ID_ISAR7

These registers are read-only, and are accessible in Privileged mode only.

4.3.12 c0, Cache Size ID Register

The CCSIDR Register characteristics are:

Purpose Provides information about the size and behavior of the instruction or data 
cache. Architecturally, there can be up to eight levels of cache, containing 
instruction, data, or unified caches. This processor contains L1 instruction 
and data caches only. The CSSELR determines which CCSIDR to select, 
see c0, Cache Size Selection Register on page 4-37.

Usage constraints The CCSIDR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-20 on page 4-35.

Figure 4-24 shows the CCSIDR bit assignments.

Figure 4-24 CCSIDR bit assignments

Line 
Size

W
T

31 30 29 28 27 13 12 2 0

W
B

R
A

W
A NumSets Associativity
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-34
ID092411 Non-Confidential



System Control 
Table 4-20 shows the CCSIDR bit assignments.

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line. For 
example, a value of 0x0 indicates there are four words in a cache line, that is the minimum size 
for the cache. A value of 0x1 indicates there are eight words in a cache line. 

Table 4-21 shows the individual bit field and complete register encodings for the CCSIDR. Use 
this to match the cache size and level of cache set by the Current Cache Size Selection Register 
(CSSR). See c0, Cache Size Selection Register on page 4-37.

To access the CCSIDR read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 0 ; Read CCSIDR

Table 4-20 CCSIDR bit assignments

Bits Name Function

[31] WT Indicates support available for write-through:
1 = write-through support availablea

a. See Table 4-21 for valid bit field encodings.

[30] WB Indicates support available for write-back:
1 = write-back support availablea

[29] RA Indicates support available for read allocation:
1 = read allocation support availablea

[28] WA Indicates support available for write allocation:
1 = write allocation support availablea

[27:13] NumSets Indicates the number of sets as 
(number of sets) - 1a

[12:3] Associativity Indicates the number of ways as 
(number of ways) - 1a 

[2:0] LineSize Indicates the number of words in each cache linea

Table 4-21 Bit field and register encodings for CCSIDR

Size
Complete 
register 
encoding

Register bit field encoding

WT WB RA WA NumSets Associativity LineSize

4KB 0xF003E019 1 1 1 1 0x001F 0x3 0x1

8KB 0xF007E019 1 1 1 1 0x003F

16KB 0xF00FE019 1 1 1 1 0x007F

32KB 0xF01FE019 1 1 1 1 0x00FF

64KB 0xF03FE019 1 1 1 1 0x01FF
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-35
ID092411 Non-Confidential



System Control 
4.3.13 c0, Cache Level ID Register

The CLIDR Register characteristics are:

Purpose • Indicates the cache levels that are implemented. Architecturally, 
there can be a different number of cache levels on the instruction and 
data side. 

• Captures the point-of-coherency. 
• Captures the point-of-unification. 

Usage constraints The CLIDR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-22.

Figure 4-25 shows the CLIDR bit assignments.

Figure 4-25 CLIDR Register bit assignments

Table 4-22 shows the CLIDR bit assignments.

LoUIS CL 7 CL 6 CL 5 CL 4 CL 3 CL 2 CL 1

Reserved

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 10 8 6 5 3 2 0

LoU LoC

Table 4-22 CLIDR Register bit assignments

Bits Name Function

[31:30] - SBZ

[29:27] LoU Level of Unification.
0b001 = level 2, if either cache is implemented
0b000 = level 1, if neither instruction nor data cache is implemented.

[26:24] LoC Level of Coherency.
0b001 = level 2, if either cache is implemented
0b000 = level 1, if neither instruction nor data cache is implemented.

[23:21] LoUIS Level of Unification Inner Shareable
0b000 = MP extensions are not implemented.
0b001 = Level 2

[20:18] CL 7 0b000 = no cache at CL 7.

[17:15] CL 6 0b000 = no cache at CL 6.

[14:12] CL 5 0b000 = no cache at CL 5.

[11:9] CL 4 0b000 = no cache at CL 4.

[8:6] CL 3 0b000 = no cache at CL 3.

[5:3] CL 2 0b000 = no cache at CL 2.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-36
ID092411 Non-Confidential



System Control 
To access the CLIDR, read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 1 ; Read CLIDR

4.3.14 c0, Auxiliary ID Register 

The AIDR is:
• a read-only register
• accessible in Privileged mode only.

The AIDR characteristics are:

Purpose Provides additional information about the processor.

Usage constraints The AIDR is:
• a read-only register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes In this processor, the AIDR reads as 0x00000000.

To access the AIDR read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 7 ; Read AIDR

4.3.15 c0, Cache Size Selection Register

The CSSELR characteristics are:

Purpose Holds the value that the processor uses to select the CSSELR to use. 

Usage constraints The CSSELR is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-23 on page 4-38.

Figure 4-26 on page 4-38 shows the CSSELR bit assignments.

[2] CL 1 RAZ. Indicates no unified cache at CL1.

[1] CL 1 0b001 = data cache is implemented
0b000 = no data cache is implemented.

[0] CL 1 0b001 = an instruction cache is implemented
0b000 = no instruction cache is implemented.

Table 4-22 CLIDR Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-37
ID092411 Non-Confidential



System Control 
Figure 4-26 CSSELR bit assignments

Table 4-23 shows the CSSELR bit assignments.

To access the CCSIDRs read or write CP15 with:

MRC p15, 2, <Rd>, c0, c0, 0 ; Read CSSELR
MCR p15, 2, <Rd>, c0, c0, 0 ; Write CSSELR

4.3.16 c1, System Control Register

The SCTLR characteristics are:

Purpose Provides control and configuration information for:
• memory alignment, endianness, protection, and fault behavior
• MPU and cache enables and cache replacement strategy
• interrupts and the behavior of interrupt latency
• the location for exception vectors
• program flow prediction.

Usage constraints The SCTLR is:
• a read/write register
• accessible in Privileged mode only.
• Attempts to read or write the SCTLR from User mode result in an 

Undefined Instruction exception.

Configurations Available in all processor configurations.

Attributes See Table 4-24 on page 4-39.

Figure 4-27 on page 4-39 shows the SCTLR bit assignments.

Reserved Level

4 3 1 0

InD

31

Table 4-23 CSSELR bit assignments

Bits Name Function

[31: 4] - SBZ.

[3:1] Level Identifies which cache level to select.
b000 = Level 1 cache
This field is read only, writes are ignored.

[0] InD Identifies instruction or data cache to use.
1 = instruction
0 = data.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-38
ID092411 Non-Confidential



System Control 
Figure 4-27 SCTLR bit assignments

Table 4-24 shows the SCTLR bit assignments.

TRE

IE
TE

AFE

NMFI
SBZ

EE
VE

RR
SBZ
SBO
BR
SBO

FI

DZ
SBZ

M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 7 6 3 2 1 0

SBO 1 V I Z SBZ SBO C A

SW

Table 4-24 SCTLR bit assignments

Bits Name Function

[31] IE Identifies little or big instruction endianness in use:
0 = little-endianness
1 = big-endianness.
The primary input CFGIE defines the value. This bit is read-only.

[30] TE Thumb exception enable:
0 = enable ARM exception generation
1 = enable Thumb exception generation.
The primary input TEINIT defines the reset value.

[29] AFE Access Flag Enable. On the processor this bit is SBZ.

[28] TRE TEX Remap Enable. On the processor this bit is SBZ.

[27] NMFI NMFI, non-maskable fast interrupt enable:
0 = Software can disable FIQs
1 = Software cannot disable FIQs.
This bit is read-only. The configuration input CFGNMFIm defines its value.

[26] - SBZ.

[25] EE Determines how the E bit in the CPSR is set on an exception:
0 = CPSR E bit is set to 0 on an exception
1 = CPSR E bit is set to 1 on an exception.
The primary input CFGEE defines the reset value.

[24] VE Configures vectored interrupt:
0 = exception vector address for IRQ is 0x00000018 or 0xFFFF0018. See V bit.
1 = VIC controller provides handler address for IRQ.
The reset value of this bit is 0.

[23:22] - SBO.

[21] FI Fast Interrupts enable.
On the processor Fast Interrupts are always enabled. This bit is SBO.

[20] - SBZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-39
ID092411 Non-Confidential



System Control 
[19] DZ Divide by zero:
0 = do not generate an Undefined Instruction exception
1 = generate an Undefined Instruction exception.
The reset value of this bit is 0.

[18] - SBO.

[17] BR MPU background region enable. 

[16] - SBO.

[15] - SBZ.

[14] RR Round-robin bit, controls replacement strategy for instruction and data caches:
0 = random replacement strategy
1 = round-robin replacement strategy.
The reset value of this bit is 0. The processor always uses a random replacement strategy, regardless of the state 
of this bit.

[13] V Determines the location of exception vectors:
0 = normal exception vectors selected, address range = 0x00000000-0x0000001C
1 = high exception vectors (HIVECS) selected, address range = 0xFFFF0000-0xFFFF001C.
The primary input VINITHIm defines the reset value.

[12] I Enables L1 instruction cache:
0 = instruction caching disabled. This is the reset value.
1 = instruction caching enabled.
If no instruction cache is implemented, then this bit is SBZ.

[11] Z Branch prediction enable bit.
The processor supports branch prediction. This bit is SBO. The ACTLR can control branch prediction, see c1, 
Auxiliary Control Register on page 4-41.

[10] SW Enables SWP and SWPB instructions
0 = SWP and SWPB are Undefined
1 = SWP and SWPB are executed with full locking support on the bus
The reset value of this bit is 0.a

[9:7] - SBZ.

[6:3] - SBO.

[2] C Enables L1 data cache:
0 = data caching disabled. This is the reset value.
1 = data caching enabled. 
If no data cache is implemented, then this bit is SBZ.

[1] A Enables strict alignment of data to detect alignment faults in data accesses:
0 = strict alignment fault checking disabled. This is the reset value.
1 = strict alignment fault checking enabled.

[0] M Enables the MPU:
0 = MPU disabled. This is the reset value.
1 = MPU enabled.
If no MPU is implemented, this bit is SBZ.

Table 4-24 SCTLR bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-40
ID092411 Non-Confidential



System Control 
To use the SCTLR, ARM recommends that you use a read-modify-write technique. To access 
the SCTLR, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 0 ; Read SCTLR
MCR p15, 0, <Rd>, c1, c0, 0 ; Write SCTLR

Attempts to read or write the SCTLR from User mode results in an Undefined Instruction 
exception.

4.3.17 c1, Auxiliary Control Register

The ACTLR characteristics are:

Purpose Controls:
• branch prediction
• performance features
• error and parity logic.

Usage constraints The ACTLR is:
• A read/write register.
• Accessible in Privileged mode only.
• ARM recommends that any instruction that changes bits [31:28] or 

[7] is followed by an ISB instruction to ensure that the changes have 
taken effect before any dependent instructions are executed.

Configurations Available in all processor configurations.

Attributes See Table 4-25 on page 4-42.

Figure 4-28 shows the ACTLR bit assignments.

Figure 4-28 ACTLR bit assignments

a. Unless explicitly enabled, SWP and SWPB are Undefined

31 25 24 23 22 21 19 18 17 16 15 14 13 12 11 7 6 3 2 1 0

CEC

26272830 29

DIADI

1020

DICDI
DIB2DI
DIB1DI

B1TCMPCEN
B0TCMPCEN

ATCMPCEN
AXISCEN

9

BP

58

AXISCUEN
DILSM

DEOLP
DBHE

FRCDIS RSDIS
Reserved

ATCMECEN
B0TCMECEN
B1TCMECEN
DILS
sMOV
FDSnS
FWT
FORA
DNCH
ERPEG
DLFO
DBWR
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-41
ID092411 Non-Confidential



System Control 
Table 4-25 shows the ACTLR bit assignments.

Table 4-25 ACTLR bit assignments

Bits Name Function

[31] DICDIa Case C dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[30] DIB2DIa Case B2 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[29] DIB1DIa Case B1 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[28] DIADIa Case A dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[27] B1TCMPCEN B1TCM ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAMm[2]b defines the reset value.
If the BTCM is configured with ECC, you must always set this bit to the same value as B0TCMPCEN.

[26] B0TCMPCEN B0TCM ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAMm[1]b defines the reset value.
If the BTCM is configured with ECC, you must always set this bit to the same value as B1TCMPCEN.

[25] ATCMPCEN ATCM ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAMm[0]b defines the reset value.

[24] AXISCEN AXI slave cache RAM access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

Note
 When AXI slave cache access is enabled, the caches are disabled and the processor cannot run any cache 
maintenance operations. If the processor attempts a cache maintenance operation, an Undefined 
Instruction exception is taken.

[23] AXISCUEN AXI slave cache RAM non-privileged access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

[22] DILSM Disable Low Interrupt Latency (LIL) on load/store multiples:
0 = Enable LIL on load/store multiples. This is the reset value.
1 = Disable LIL on all load/store multiples.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-42
ID092411 Non-Confidential



System Control 
[21] DEOLP Disable end of loop prediction:
0 = Enable loop prediction. This is the reset value.
1 = Disable loop prediction.

[20] DBHE Disable Branch History (BH) extension:
0 = Enable the extension. This is the reset value.
1 = Disable the extension.

[19] FRCDIS Fetch rate control disable:
0 = Normal fetch rate control operation. This is the reset value.
1 = Fetch rate control disabled.

[18] - SBZ.

[17] RSDIS Return stack disable:
0 = Normal return stack operation. This is the reset value.
1 = Return stack disabled.

[16:15] BP This field controls the branch prediction policy:
b00 = Normal operation. This is the reset value.
b01 = Branch always taken and history table updates disabled.
b10 = Branch always not taken and history table updates disabled.
b11 = Reserved. Behavior is Unpredictable if this field is set to b11.

[14] DBWR Disable write burst in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable write burst optimization.

[13] DLFO Disable linefill optimization in the AXI master:
0 = Normal operation. This is the reset value.
1 = Limits the number of outstanding data linefills to two.

[12] ERPEGc Enable random parity error generation:
0 = Random parity error generation disabled. This is the reset value.
1 = Enable random parity error generation in the cache RAMs.

Note
 This bit controls error generation logic during system validation. A synthesized ASIC typically does not 
have such models and this bit is therefore redundant for ASICs.

[11] DNCH Disable data forwarding for Non-cacheable accesses in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable data forwarding for Non-cacheable accesses.

[10] FORA Force outer read allocate (ORA) for outer write allocate (OWA) regions:
0 = No forcing of ORA. This is the reset value.
1 = ORA forced for OWA regions.

[9] FWT Force write-through (WT) for write-back (WB) regions:
0 = No forcing of WT. This is the reset value.
1 = WT forced for WB regions.

Table 4-25 ACTLR bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-43
ID092411 Non-Confidential



System Control 
To access the ACTLR, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 1 ; Read ACTLR
MCR p15, 0, <Rd>, c1, c0, 1 ; Write ACTLR

4.3.18 c15, Secondary Auxiliary Control Register

The Secondary Auxiliary Control Register characteristics are:

Purpose Controls:
• branch prediction
• performance features
• error and parity logic.

Usage constraints The Secondary Auxiliary Control Register is:
• A read/write register.
• Accessible in Privileged mode only.

[8] FDSnS Force D-side to not-shared when MPU is off:
0 = Normal operation. This is the reset value.
1 = D-side normal Non-cacheable forced to Non-shared when MPU is off.

[7] sMOV sMOV of a divide does not complete out of order. No other instruction is issued until the divide is finished.
0 = Normal operation. This is the reset value.
1 = sMOV out of order disabled.

[6] DILS Disable low interrupt latency on all load/store instructions.
0 = Enable LIL on all load/store instructions. This is the reset value.
1 = Disable LIL on all load/store instructions.

[5:3] CEC Cache error control for cache parity and ECC errors.
See Table 8-2 on page 8-21 and Table 8-3 on page 8-22 for more information about how these bits are 
used. The reset value is b100.

[2] B1TCMECEN B1TCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAMm[2] defines the reset value.

[1] B0TCMECEN B0TCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAMm[1] defines the reset value.

[0] ATCMECEN ATCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAMm[0] defines the reset value.

a. See Dual issue on page B-33
b. See Configuration signals on page A-4.
c. This bit is only supported if parity error generation is implemented in your design.

Table 4-25 ACTLR bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-44
ID092411 Non-Confidential



System Control 
• ARM recommends that any instruction that changes bits [20:16] is 
followed by an ISB instruction to ensure that the changes have taken 
effect before any dependent instructions are executed.

Configurations Available in all processor configurations.

Attributes See Table 4-26.

Figure 4-29 shows the Secondary Auxiliary Control Register bit assignments.

Figure 4-29 Secondary Auxiliary Control Register bit assignments

Table 4-26 shows the Secondary Auxiliary Control Register bit assignments.

Reserved

31 22 21 19 18 17 16 15 14 13 12 11 7 3 2 1 01020 9 48

DR2B
DF6DI
DF2DI

DOODPFP
DDI

ATCMRMW

ATCMECC

IDC
DZC
IOC
UFC
OFC

IXC

DOOFMACS

BTCMRMW

B0TCMECC

Reserved

Reserved

DCHE

23

Table 4-26 Secondary Auxiliary Control Register bit assignments

Bits Name Function

[31:23] - SBZ.

[22] DCHE Disable hard-error support in the caches.a

0 = Enabled. The cache logic recovers from some hard errors.
1 = Disabled. Most hard errors in the caches are fatal. This is the reset value.
See Hard errors on page 8-5 for more information.

[21] DR2Bb Enable random 2-bit error generation in cache RAMs. This bit has no effect unless ECC is configured, see 
Configurable options on page 1-6.
0 = Disabled. This is the reset value.
1 = Enabled.

Note
 This bit controls error generation logic during system validation. A synthesized ASIC typically does not 
have such models and this bit is therefore redundant for ASICs.

[20] DF6DI F6 dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[19] DF2DI F2_Id/F2_st/F2D dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-45
ID092411 Non-Confidential



System Control 
[18] DDI F1/F3/F4dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[17] DOODPFP Out-of-order double-precision floating point instruction control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[16] DOOFMAC
S

Out-of-order FMACS control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[15:14] - SBZ.

[13] IXC Floating-point inexact exception output mask.c

0 = Mask floating-point inexact exception output. The output FPIXCm is forced to zero. This is the reset 
value.
1 = Propagate floating point inexact exception flag FPSCR.IXC to output FPIXCm.

[12] OFC Floating-point overflow exception output mask.c

0 = Mask floating-point overflow exception output. The output FPOFCm is forced to zero. This is the reset 
value.
1 = Propagate floating-point overflow exception flag FPSCR.OFC to output FPOFCm.

[11] UFC Floating-point underflow exception output mask.c

0 = Mask floating-point underflow exception output. The output FPUFCm is forced to zero. This is the 
reset value.
1 = Propagate floating-point underflow exception flag FPSCR.UFC to output FPUFCm.

[10] IOC Floating-point invalid operation exception output mask.c

0 = Mask floating-point invalid operation exception output. The output FPIOCm is forced to zero. This is 
the reset value.
1 = Propagate floating-point invalid operation exception flag FPSCR.IOC to output FPIOCm.

[9] DZC Floating-point divide-by-zero exception output mask.c

0 = Mask floating-point divide-by-zero exception output. The output FPDZCm is forced to zero. This is 
the reset value.
1 = Propagate floating-point divide-by-zero exception flag FPSCR.DZC to output FPDZCm.

[8] IDC Floating-point input denormal exception output mask.c

0 = Mask floating-point input denormal exception output. The output FPIDCm is forced to zero. This is 
the reset value.
1 = Propagate floating-point input denormal exception flag FPSCR.IDC to output FPIDCm.

[7:4] - SBZ.

[3] BTCMECC Correction for internal ECC logic on BTCM ports.d

0 = Enabled. This is the reset value.
1 = Disabled.

Table 4-26 Secondary Auxiliary Control Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-46
ID092411 Non-Confidential



System Control 
To access the Secondary Auxiliary Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c0, 0 ; Read Secondary Auxiliary Control Register
MCR p15, 0, <Rd>, c15, c0, 0 ; Write Secondary Auxiliary Control Register

4.3.19 c1, Coprocessor Access Control Register

The CPACR characteristics are:

Purpose Sets access rights for coprocessors.

Usage constraints The CPACR is:
• A read/write register.
• Accessible in Privileged mode only.
• Because this processor does not support coprocessors CP0 through 

CP9, CP12, and CP13, bits [27:24] and [19:0] in this register are 
read-as-zero and ignore writes.

• CPACR has no effect on access to CP14, the debug control 
coprocessor, or CP15, the system control coprocessor. The only 
other coprocessor that the Cortex-R5F CPU includes is the FPU, 
CP10, and CP11. This register enables software to determine if the 
FPU exists in the CPU.

Configurations Available in all processor configurations.

Attributes See Table 4-27 on page 4-48.

Figure 4-30 on page 4-48 shows the CPACR bit assignments.

[2] ATCMECC Correction for internal ECC logic on ATCM port.d

0 = Enabled. This is the reset value.
1 = Disabled.

[1] BTCMRMW Enables 64-bit stores for the BTCMs. When enabled, the processor uses read-modify-write to ensure that 
all reads and writes presented on the BTCM ports are 64 bits wide.e

0 = Disabled
1 = Enabled.
The primary input RMWENRAMm[1] defines the reset value.

[0] ATCMRMW Enables 64-bit stores for the ATCM. When enabled, the processor uses read-modify-write to ensure that all 
reads and writes presented on the ATCM port are 64 bits wide.e

0 = Disabled
1 = Enabled.
The primary input RMWENRAMm[0] defines the reset value.

a. This bit is RAZ if both caches have neither ECC nor parity.
b. This bit is only supported if parity error generation is implemented in your design.
c. This bit has no effect unless the Floating Point Unit (FPU) has been configured, see Configurable options on page 1-6.
d. This bit has no effect unless TCM ECC logic has been configured for the respective TCM interface, see Configurable options on page 1-6.
e. This feature is not available when the TCM interface has been built with 32-bit ECC.

Table 4-26 Secondary Auxiliary Control Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-47
ID092411 Non-Confidential



System Control 
Figure 4-30 CPACR bit assignments

Table 4-27 shows the CPACR bit assignments.

To access the CPACR, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 2 ; Read CPACR
MCR p15, 0, <Rd>, c1, c0, 2 ; Write CPACR

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cp13 cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1 cp0

Reserved
D32DIS  
ASEDIS  

30 29

Table 4-27 CPACR bit assignments

Bits Name Function

[31] ASEDIS Advanced-SIMD disable. Read only.
0 = FPU is not configured
1 = FPU is configured, Advanced SIMD is not available.

[30] D32DIS D16-D31 disable. Read only.
0 = FPU is not configured
1 = FPU is configured, VFP registers D16-D32 are not available.

[29:28] - Read as Zero.

[27:26] cp13 Read as Zero.

[25:24] cp12

[23:22] cp11 Defines access permissions for the FPU.
If the FPU is not included for this processor, these bits are RAZ/WI. 
If the FPU is included, both cp10 and cp11 must be programmed to the same value:
b00 = Access denied. Attempts to access generates an Undefined Instruction exception. This is the reset value.
b01 = Privileged mode access only
b10 = Reserved
b11 = Privileged and User mode access.

[21:22] cp10

[19:18] cp9 Read as Zero.

[17:16] cp8

[15:14] cp7

[13:12] cp6

[11:10] cp5

[9:8] cp4

[7:6] cp3

[5:4] cp2

[3:2] cp1

[1:0] cp0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-48
ID092411 Non-Confidential



System Control 
4.3.20 Fault Status and Address Registers

The processor reports the status and address of faults that occur during its operation. For both 
data and instruction faults there are two Fault Status Registers (FSRs) and one Fault Address 
Register (FAR). 

Fields within the Data and Instruction FSRs indicate the priority and source of a fault and the 
validity of the address in the corresponding FAR. Table 4-28 shows this encoding for the FSRs.

All other encodings for these FSR bits are Reserved.

c5, Data Fault Status Register

The DFSR is:
• a read/write register 
• accessible in Privileged mode only.

The DFSR characteristics are:

Purpose Holds status information regarding the source of the last data abort.

Usage constraints The DFSR is:
• a read/write register 
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-29 on page 4-50.

Figure 4-31 shows the DFSR bit assignments.

Figure 4-31 DFSR bit assignments

Table 4-28 Fault Status Register encodings

Priority Sources FSR [10,3:0] FAR

Highest Alignment 0b00001 Valid

Background 0b00000 Valid

Permission 0b01101 Valid

Synchronous External Abort 0b01000 Valid

Asynchronous External Abort 0b10110 Unpredictable

Synchronous Parity or ECC Error 0b11001 Valid

Asynchronous Parity or ECC Error 0b11000 Unpredictable

Lowest Debug Event 0b00010 Unchanged

Domain0Reserved

31 8 7 4 3 0

Status

9

0S

10111213

RW
SD
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-49
ID092411 Non-Confidential



System Control 
Table 4-29 shows the DFSR bit assignments.

To use the DFSR read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 0 ; Read DFSR
MCR p15, 0, <Rd>, c5, c0, 0 ; Write DFSR

c5, Instruction Fault Status Register

The IFSR characteristics are:

Purpose Holds status information regarding the source of the last instruction abort. 

Usage constraints The IFSR is:
• a read/write register 
• accessible in Privileged mode only. 

Configurations Available in all processor configurations.

Attributes See Table 4-30 on page 4-51.

Figure 4-32 shows the IFSR bit assignments.

Figure 4-32 IFSR bit assignments

Table 4-29 DFSR bit assignments

Bits Name Function

[31:13] - SBZ.

[12] SD Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid for external 
aborts. For all other aborts types of abort, this bit is set to zero:
0 = AXI Decode error (DECERR), or AHB error, caused the abort
1 = AXI Slave error (SLVERR), or unsupported exclusive access, for example exclusive access using the AHB 
peripheral port, caused the abort. 

[11] RW Indicates whether a read or write access caused an abort:
0 = read access caused the abort
1 = write access caused the abort. 

[10]a S Part of the Status field.

[9:8] - Always read as 0. Writes ignored.

[7:4] Domain SBZ. This is because domains are not implemented in this processor.

[3:0]a Status Indicates the type of fault generated. To determine the data fault, you must use bit [12] and bit [10] in 
conjunction with bits [3:0]. 

a. For more information on how these bits are used in reporting faults, see Table 4-28 on page 4-49.

SReserved

31 3 0

StatusDomain

4910111213

Reserved

SD

8 7

Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-50
ID092411 Non-Confidential



System Control 
Table 4-30 shows the IFSR bit assignments.

To access the IFSR read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 1 ; Read IFSR
MCR p15, 0, <Rd>, c5, c0, 1 ; Write IFSR

c5, Auxiliary Fault Status Registers

There are two auxiliary fault status registers:
• the Auxiliary Data Fault Status Register (ADFSR)
• the Auxiliary Instruction Fault Status Register (AIFSR).

The auxiliary fault status registers characteristics are:

Purpose Provide additional information about data and instruction parity, ECC, and 
external TCM errors.

Usage constraints The auxiliary fault status registers are:
• Read/write registers.
• Accessible in Privileged mode only.
• The contents of an auxiliary fault status register are only valid when 

the corresponding Data or Instruction Fault Status Register indicates 
that a parity or ECC error has occurred. At other times the contents 
of the auxiliary fault status registers are Unpredictable.

Configurations Available in all processor configurations.

Attributes See Table 4-31 on page 4-52.

Figure 4-33 on page 4-52 shows the auxiliary fault status registers bit assignments.

Table 4-30 IFSR bit assignments

Bits Name Function

[31:13] - SBZ.

[12] SD Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid for external 
aborts. For all other aborts types of abort, this bit is set to zero:
0 = AXI Decode error (DECERR) caused the abort
1 = AXI Slave error (SLVERR) caused the abort. 

[11] - SBZ.

[10]a S Part of the Status field.

[9:8] - SBZ.

[7:4] Domain SBZ. This is because domains are not implemented in this processor.

[3:0]a Status Indicates the type of fault generated. To determine the instruction fault, bit [12] and bit [10] must be used in 
conjunction with bits [3:0].

a. For more information on how these bits are used in reporting faults, see Table 4-28 on page 4-49.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-51
ID092411 Non-Confidential



System Control 
Figure 4-33 Auxiliary fault status registers bit assignments

Table 4-31 shows the auxiliary fault status registers bit assignments.

Table 4-32 shows the encodings for the SideExt and Side bits.

To access the auxiliary fault status registers, read or write CP15 with:

Reserved IndexReserved

31 0

Reserved

427 24 23 22 14 13 5

CacheWay
Side

28 21 20

Recoverable error

19

SideExt

Table 4-31 ADFSR and AIFSR bit assignments

Bits Name Function

[31:28] - SBZ.

[27:24] CacheWaya The value returned in this field indicates the cache way or ways in which the error occurred.

[23:22] Side The value returned in this field indicates the source of the error. See Table 4-32 for the encodings.

[21] Recoverable 
error

The value returned in this field indicates if the error is recoverable.
0 = Unrecoverable error.
1 = Recoverable error. This includes all correctable parity/ECC errors and recoverable TCM external errors.

[20] SideExt The value returned in this field indicates the source of the error. See Table 4-32 for the encodings.

[19:14] - SBZ.

[13:5] Indexb This field returns the index value for the access giving the error.

[4:0] - SBZ.

a. This field is only valid for data cache store parity/ECC errors, otherwise it is Unpredictable.
b. This field is only valid for data cache store parity/ECC errors. On the AIFSR, and for TCM accesses, this field SBZ.

Table 4-32 SideExt and Side bit encodings

Bit values
Meaning

SideExt Side

0 00 Cache/AXIM

0 01 ATCM

0 10 BTCM

0 11 Reserved

1 00

1 01 AXI peripheral port, including virtual interface

1 10 AHB peripheral port

1 11 Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-52
ID092411 Non-Confidential



System Control 
MRC p15, 0, <Rd>, c5, c1, 0 ; Read Auxiliary Data Fault Status Register 
MCR p15, 0, <Rd>, c5, c1, 0 ; Write Auxiliary Data Fault Status Register 
MRC p15, 0, <Rd>, c5, c1, 1 ; Read Auxiliary Instruction Fault Status Register
MCR p15, 0, <Rd>, c5, c1, 1 ; Write Auxiliary Instruction Fault Status Register

c6, Data Fault Address Register

The DFAR characteristics are:

Purpose Holds the address of the fault when a synchronous abort occurs.

Usage constraints The DFAR is:
• a read/write register 
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes The DFAR bits [31:0] contain the address where the synchronous abort 
occurred.

To access the DFAR read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 0 ; Read DFAR
MCR p15, 0, <Rd>, c6, c0, 0 ; Write DFAR

A write to this register sets the DFAR to the value of the data written. This is useful for a 
debugger to restore the value of the DFAR.

The processor also updates the DFAR on debug exception entry because of watchpoints. See 
Effect of debug exceptions on CP15 registers and DBGWFAR on page 12-43 for more 
information.

c6, Instruction Fault Address Register

The IFAR characteristics are:

Purpose Holds the address of the instruction that caused a prefetch abort.

Usage constraints The IFAR is:
• a read/write register 
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes The IFAR bits [31:0] contain the Instruction Fault address.

To access the IFAR read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 2 ; Read IFAR
MCR p15, 0, <Rd>, c6, c0, 2 ; Write IFAR

A write to this register sets the IFAR to the value of the data written. This is useful for a 
debugger to restore the value of the IFAR.

4.3.21 c6, MPU memory region programming registers

The MPU memory region programming registers program the MPU regions. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-53
ID092411 Non-Confidential



System Control 
There is one register that specifies which one of the sets of region registers is to be accessed. 
See c6, MPU Region Number Register on page 4-59. Each region has its own registers to 
specify:
• region base address 
• region size and enable 
• region access control.

You can implement the processor with 12 or 16 regions, or without an MPU entirely. If you 
implement the processor without an MPU, then there are no regions and no region programming 
registers.

Note
 • When the MPU is enabled:

— The MPU determines the access permissions for all accesses to memory, including 
the TCMs. Therefore, you must ensure that the memory regions in the MPU are 
programmed to cover the complete TCM address space with the appropriate access 
permissions. You must define at least one of the regions in the MPU.

— An access to an undefined area of memory normally generates a background fault.

• For the TCM space the processor uses the access permissions but ignores the region 
attributes from MPU.
CP15, c9 sets the location of the TCM base address. For more information see c9, BTCM 
Region Register on page 4-63 and c9, ATCM Region Register on page 4-64.

c6, MPU Region Base Address Registers

The MPU Region Base Address Register characteristics are:

Purpose Describes the base address of the region specified by the Memory Region 
Number Register. 

Usage constraints The MPU Region Base Address Registers are:
• 32-bit read/write registers
• accessible in Privileged mode only.
• The region base address must always align to the region size.

Configurations Use these registers if the processor is configured with an MPU.

Attributes See Table 4-33 on page 4-55.

Figure 4-34 shows the MPU Region Base Address Registers bit assignments.

Figure 4-34 MPU Region Base Address Registers bit assignments

31 0

Base address

45

Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-54
ID092411 Non-Confidential



System Control 
Table 4-33 shows the MPU Region Base Address Registers bit assignments.

To access an MPU Region Base Address Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 0 ; Read MPU Region Base Address Register
MCR p15, 0, <Rd>, c6, c1, 0 ; Write MPU Region Base Address Register

c6, MPU Region Size and Enable Registers

The MPU Region Size and Enable Register characteristics are:

Purpose • Specifies the size of the region specified by the Memory Region 
Number Register.

• Identifies the address ranges that are used for a particular region.
• Enables or disables the region, and its sub-regions, specified by the 

Memory Region Number Register.

Usage constraints The MPU Region Size and Enable Registers are:
• 32-bit read/write registers
• accessible in Privileged mode only.

Configurations Use these registers if the processor is configured with an MPU.

Attributes See Table 4-34 on page 4-56.

Figure 4-35 shows the MPU Region Size and Enable Registers bit assignments.

Figure 4-35 MPU Region Size and Enable Registers bit assignments

Table 4-33 MPU Region Base Address Registers bit assignments

Bits Name Function

[31:5] Base address Defines bits [31:5] of the base address of a region

[4:0] - SBZ

Reserved Sub-region disable

31 6 5 0

Region size

1781516

Reserved
Enable
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-55
ID092411 Non-Confidential



System Control 
Table 4-34 shows the MPU Region Size and Enable Registers bit assignments.

To access an MPU Region Size and Enable Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 2 ; Read Data MPU Region Size and Enable Register
MCR p15, 0, <Rd>, c6, c1, 2 ; Write Data MPU Region Size and Enable Register

Writing a region size that is outside the range results in Unpredictable behavior.

c6, MPU Region Access Control Registers 

The MPU Region Access Control Register characteristics are:

Purpose Holds the region attributes and access permissions for the region specified 
by the Memory Region Number Register.

Usage constraints The MPU Region Access Control Registers are:
• read/write registers
• accessible in Privileged mode only.

Configurations Use these registers if the processor is configured with an MPU.

Attributes See Table 4-35 on page 4-57.

Figure 4-36 on page 4-57 shows the MPU Region Access Control Registers bit assignments.

Table 4-34 Region Size Register bit assignments

Bits Name Function

[31:16] - SBZ.

[15:8] Sub-region disable Each bit position represents a sub-region, 0-7a. 
Bit [8] corresponds to sub-region 0
...
Bit [15] corresponds to sub-region 7
The meaning of each bit is:
0 = address range is part of this region
1 = address range is not part of this region.

- SBZ.

[5:1] Region size Defines the region size:
b00000 - b00011=Unpredictable
b00100 = 32 bytes
b00101 = 64 bytes
b00110 = 128 bytes
b00111 = 256 bytes
b01000 = 512 bytes
b01001 = 1KB
b01010 = 2KB
b01011 = 4KB

b01100 = 8KB
b01101 = 16KB
b01110 = 32KB
b01111 = 64KB
b10000 = 128KB
b10001 = 256KB
b10010 = 512KB
b10011 = 1MB
b10100 = 2MB
b10101 = 4MB

b10110 = 8MB
b10111 = 16MB
b11000 = 32MB
b11001 = 64MB
b11010 = 128MB
b11011 = 256MB
b11100 = 512MB
b11101 = 1GB
b11110 = 2GB
b11111 = 4GB.

[0] Enable Enables or disables a memory region:
0 = Memory region disabled. Memory regions are disabled on reset.
1 = Memory region enabled. A memory region must be enabled before it is used.

a. Sub-region 0 covers the least significant addresses in the region, while sub-region 7 covers the most significant 
addresses in the region. For more information, see Subregions on page 7-3.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-56
ID092411 Non-Confidential



System Control 
Figure 4-36 MPU Region Access Control Register bit assignments

Table 4-35 shows the MPU Region Access Control Registers bit assignments.

Table 4-36 shows the encoding for the TEX[2:0], C, and B regions.

Reserved BC

31 3 0

TEX S

12567811 1012

XN AP

Reserved

13

Table 4-35 MPU Region Access Control Register bit assignments

Bits Name Function

[31:13] - SBZ.

[12] XN Execute Never. Determines if a region of memory is executable: 
0 = all instruction fetches enabled
1 = no instruction fetches enabled.

[11] - Reserved.

[10:8] AP Access permission. Defines the data access permissions. For more information on AP bit values, 
see Table 4-38 on page 4-58. 

[7:6] - SBZ.

[5:3] TEX Type extension. Defines the type extension attributea.

[2] S Share. Determines if the memory region is Shared or Non-shared:
0 = Non-shared.
1 = Shared.
This bit only applies to Normal, not Device or Strongly Ordered memory.

[1] C C bita:

[0] B B bita:

a. For more information on this region attribute, see Table 4-36.

Table 4-36 TEX[2:0], C, and B encodings

TEX[2:0] C B Description Memory Type Shareable?

000 0 0 Strongly-ordered. Strongly-ordered Shareable

000 0 1 Shareable Device. Device Shareable

000 1 0 Outer and Inner write-through, no write-allocate. Normal S bita

000 1 1 Outer and Inner write-back, no write-allocate.b Normal S bita

001 0 0 Outer and Inner Non-cacheable. Normal S bita

001 0 1 Reserved. - -

001 1 0

001 1 1 Outer and Inner write-back, write-allocate. Normal S bita
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-57
ID092411 Non-Confidential



System Control 
When TEX[2] == 1, the memory region is Cacheable memory, and the rest of the encoding 
defines the Inner and Outer cache policies:
TEX[1:0] defines the Outer cache policy
C,B defines the Inner cache policy

The same encoding is used for the Outer and Inner cache policies. Table 4-37 shows the 
encoding.

Table 4-38 shows the AP bit values that determine the permissions for Privileged and User data 
access.

010 0 0 Non-shareable Device. Device Non-shareable

010 0 1 Reserved. - -

010 1 X Reserved. - -

011 X X Reserved. - -

1BB A A Cacheable memory: AAc = Inner policy
BBc = Outer policy

Normal S bita

a. Region is Shareable if S == 1, and Non-shareable if S == 0.
b. If the inner cache policy for a memory region is specified as write-back, no write-allocate, then accesses to the region 

behave as if the policy were write-back, write allocate.
c. Table 4-37 shows the encoding for these bits.

Table 4-36 TEX[2:0], C, and B encodings (continued)

TEX[2:0] C B Description Memory Type Shareable?

Table 4-37 Inner and Outer cache policy encoding

Memory attribute encoding Cache policy

00 Non-cacheable

01 Write-back, write-allocate

10 Write-through, no write-allocate

11 Write-back, no write-allocatea

a. If the inner cache policy for a memory region is specified as 
write-back, no write-allocate, then accesses to the region behave as 
if the policy were write-back, write allocate.

Table 4-38 Access data permission bit encoding

AP bit values Privileged permissions User permissions Description

b000 No access No access All accesses generate a permission fault

b001 Read/write No access Privileged access only

b010 Read/write Read-only Writes in User mode generate permission faults

b011 Read/write Read/write Full access

b100 UNP UNP Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-58
ID092411 Non-Confidential



System Control 
To access the MPU Region Access Control Registers read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 4 ; Read MPU Region Access Control Register
MCR p15, 0, <Rd>, c6, c1, 4 ; Write MPU Region Access Control Register

To execute instructions in User and Privileged modes:
• the region must have read access as defined by the AP bits 
• the XN bit must be set to 0.

c6, MPU Region Number Register

The RGNRs characteristics are:

Purpose Multiple registers with one register for each memory region implemented. 
The value contained in the RGNR determines which of the multiple 
registers is accessed.

Usage constraints The RGNRs are:
• Read/write register.
• Accessible in Privileged mode only.
• Writing this register with a value greater than or equal to the number 

of regions from the MPUIR is Unpredictable. Associated MPU 
Region Register accesses are also Unpredictable.

Configurations Use this register if the processor is configured with an MPU.

Attributes See Table 4-39.

Figure 4-37 shows the bit assignments. 

Figure 4-37 RGNR bit assignments

Table 4-39 shows the bit assignments.

To access the RGNR, read or write CP15 with:

b101 Read-only No access Privileged read-only

b110 Read-only Read-only Privileged/User read-only

b111 UNP UNP Reserved

Table 4-38 Access data permission bit encoding (continued)

AP bit values Privileged permissions User permissions Description

31 4 0

Reserved Region

3

Table 4-39 RGNR bit assignments

Bits Name Function

[31:4] - SBZ.

[3:0] Region Defines the group of registers to be accessed. Read the MPUIR to determine the number of 
supported regions, see c0, MPU Type Register on page 4-17.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-59
ID092411 Non-Confidential



System Control 
MRC p15, 0, <Rd>, c6, c2, 0 ; Read RGNR
MCR p15, 0, <Rd>, c6, c2, 0 ; Write RGNR

4.3.22 Cache operations

The purpose of c7 is to manage the associated caches. The maintenance operations are formed 
into two management groups:
• Set and Way:

— clean
— invalidate
— clean and invalidate.

• Address, usually labelled MVA for Modified Virtual Address, but on this processor all 
addresses are identical:
— clean
— invalidate
— clean and invalidate.

In addition, the maintenance operations use these definitions:

Point of Coherency (PoC) 
A point where all instruction and data walks are transparent to any processor in 
the system.

Point of Unification (PoU) 
A point where instruction and data become unified and self-modifying code can 
function.

Figure 4-38 on page 4-61 shows the arrangement of the functions in this group that operate with 
the MCR and MRC instructions.

Note
 • The following operations, as Figure 4-38 on page 4-61 shows, are implemented as No 

Operation, NOP, on the processor: 
— Wait For Interrupt, CRm= c0, Opcode_2 = 4
— Invalidate all branch predictors Inner Shareable, CRm= c1, Opcode_2 = 6
— Invalidate Entire Branch Predictor Array, CRm= c5, Opcode_2 = 6
— Invalidate Branch Predictor Array Line using MVA, CRm= c5, Opcode_2 = 7

• The Wait For Interrupt (WFI) instruction provides the Wait For Interrupt function. For 
more information see the ARM Architecture Reference Manual.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-60
ID092411 Non-Confidential



System Control 
Figure 4-38 Cache operations

In addition to the register c7 cache management functions in this processor, an Invalidate all 
data caches operation is provided as a c15 operation. For convenience, this c15 operation is also 
described in this section.

Note
 • Writing c7 with a combination of CRm and Opcode_2 not listed in Figure 4-38 results in 

an Undefined Instruction exception. 

• In this processor, reading from c7 causes an Undefined Instruction exception.

• All accesses to c7 can only be executed in a Privileged mode of operation, except for the 
Instruction Synchronization Barrier, Data Synchronization Barrier, and Data Memory 
Barrier operations. These can be performed in User mode. Attempting to execute a 
Privileged instruction in User mode results in an Undefined Instruction exception.

• This processor does not contain an address-based branch predictor array.

Invalidate and clean operations

The terms that describe the invalidate, clean, and prefetch operations are defined in the ARM 
Architecture Reference Manual.

You can perform invalidate and clean operations on:
• single cache lines
• entire caches.

c7 SBZ

SBZ

MVA

SBZ

MVA

Way

MVA

Way

SBZ

SBZ

MVA

Way

DCISW, Invalidate data*
 cache line by set/way

DCIMVAC, Invalidate data*
 cache line by MVA to PoC

BPIALL, Invalidate all branch predictors

NOP, was Wait For Interrupt

CP15ISB, Instruction Synchronization Barrier operation

BPIMVA, Invalidate MVA from branch predictors

ICIALLU, Invalidate All Instruction Caches
ICIMVAU, Invalidate Instruction Cache Line by MVA to PoU

DCCMVAU, Clean data*
 cache line by MVA to PoU

DCCMVAC, Clean data*
 cache line by MVA to PoC

DCCSW, Clean data*
 cache line by set/way

CP15DSB, Data Synchronization Barrier operation
CP15DMB, Data Memory Barrier operation

DCCIMVAC, Clean and invalidate data*
 cache line by MVA to PoC

DCCISW, Clean and invalidate data*
 cache line by set/way

Opcode_2CRmCRn Opcode_1

SBZ

MVA

SBZ Should Be Zero
MVA

Way

Using MVA
Using Set and Way

SBZ Invalidate all Data Caches0c15

Write-only Accessible in User mode

4c0

0
1
4
6
7

c5

1
2

c6

1c10
2
4
5
1c11

0

1c14
2

c50

1c13 NOP Privileged only

0c1 ICIALLUIS, Invalidate all instruction caches to PoU Inner Shareable
6 BPIALLIS, Invalidate all branch predictors Inner Shareable

* data or unified
Implemented only as part of the Multiprocessing Extensions

PoU: Point of Unification PoC: Point of Coherency
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-61
ID092411 Non-Confidential



System Control 
Set and Way format

Figure 4-39 shows the Set and Way bit assignments.

Figure 4-39 c7 Set and Way bit assignments

Table 4-40 shows the Set and Way bit assignments.

Table 4-41 shows the cache sizes and the resultant bit range for Set.

See c0, Cache Type Register on page 4-15 for more information on cache sizes.

Address format

Figure 4-40 shows the invalidate and clean operations bit assignments.

Figure 4-40 Invalidate and clean operations bit assignments

Way

0

Set ReservedReserved

5 4S+4S+531 2930

Table 4-40 c7 Set and Way bit assignments

Bits Name Function

[31:30] Way Indicates the cache way to invalidate or clean.

[29:S+5] - SBZ.

[S+4:5] Set Indicates the cache set to invalidate or clean. Because the cache sizes are configurable, the width 
of the Set field is unique to the cache size. See Table 4-41.

[4:0] - SBZ.

Table 4-41 Widths of the set field for L1 cache sizes

Size Set

4KB [9:5]

8KB [10:5]

16KB [11:5]

32KB [12:5]

64KB [13:5]

Address

31 4 0

Reserved

5

ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-62
ID092411 Non-Confidential



System Control 
Table 4-42 shows the invalidate and clean operations bit assignments.

Data Synchronization Barrier operation

The purpose of the Data Synchronization Barrier operation is to ensure that all outstanding 
explicit memory transactions complete before any following instructions begin. This ensures 
that data in memory is up to date before the processor executes any more instructions.

The Data Synchronization Barrier Register is:
• a write-only operation
• accessible in both User and Privileged mode.

To access the Data Synchronization Barrier operation, write CP15 with:

MCR p15, 0, <Rd>, c7, c10, 4 ; Data Synchronization Barrier operation

For more information about memory barriers, see the ARM Architecture Reference Manual.

Data Memory Barrier operation

The purpose of the Data Memory Barrier operation is to ensure that all outstanding explicit 
memory transactions complete before any following explicit memory transactions begin. This 
ensures that data in memory is up to date before any memory transaction that depends on it.

The Data Memory Barrier operation is:
• write-only 
• accessible in User and Privileged mode.

To access the Data Memory Barrier operation write CP15 with:

MCR p15, 0, <Rd>, c7, c10,5 ; Data Memory Barrier Operation

For more information about memory barriers, see the ARM Architecture Reference Manual.

4.3.23 c9, BTCM Region Register

The BTCM Region Register characteristics are:

Purpose • Holds the base address and size of the BTCM. 
• Determines if the BTCM is enabled. 

Usage constraints The BTCM Region Register is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-43 on page 4-64.

Figure 4-41 on page 4-64 shows the BTCM Region Register bit assignments.

Table 4-42 Invalidate and clean operations bit assignments

Bits Name Function

[31:5] Address Specifies the address to invalidate or clean

[4:0] Reserved SBZ
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-63
ID092411 Non-Confidential



System Control 
Figure 4-41 BTCM Region Register bit assignments

Table 4-43 shows the BTCM Region Register bit assignments.

To access the BTCM Region Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c1, 0 ; Read BTCM Region Register
MCR p15, 0, <Rd>, c9, c1, 0 ; Write BTCM Region Register

4.3.24 c9, ATCM Region Register

The ATCM Region Register characteristics are:

Purpose • Holds the base address and size of the ATCM. 
• Determines if the ATCM is enabled. 

Usage constraints The ATCM Region Register is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-44 on page 4-65.

Base address

31 12 11 7 6 2 1 0

Reserved Size

Reserved
Enable

Table 4-43 BTCM Region Register bit assignments

Bits Name Function

[31:12] Base 
address

Base address. Defines the base address of the BTCM. The base address must be aligned to the size of the 
BTCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored. 
At reset, if LOCZRAMAm is set to:
0 =The initial base address is 0x0.
1 =The initial base address is implementation-defined. See Configurable options on page 1-6.

[11:7] - UNP on reads, SBZ on writes.

[6:2] Size Size. Indicates the size of the BTCM on reads. On writes this field is ignored. See About the TCMs on 
page 8-13.

b00000 = 0KB, no TCM
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB

b00110 = 32KB
b00111 = 64KB
b01000 = 128KB
b01001 = 256KB

b01010 = 512kB
b01011 = 1MB
b01100 = 2MB
b01101 = 4MB
b01110 = 8MB

[1] - SBZ. 

[0] Enable Enables or disables the BTCM.
0 = Disabled
1 = Enabled. The reset value of this field is determined by the INITRAMBm input pin.
This bit is RAZ if the processor has been implemented or integrated without a BTCM.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-64
ID092411 Non-Confidential



System Control 
Figure 4-42 shows the ATCM Region Register bit assignments.

Figure 4-42 ATCM Region Register bit assignments

Table 4-44 shows the ATCM Region Register bit assignments.

To access the ATCM Region Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c1, 1 ; Read ATCM Region Register
MCR p15, 0, <Rd>, c9, c1, 1 ; Write ATCM Region Register

4.3.25 c9, TCM Selection Register

The TCM Selection Register determines the TCM region register that the processor writes to. 
The processor only supports one TCM region for each TCM interface, and the TCM Selection 
Register Reads-As-Zero and ignores writes. It is only accessible in Privileged mode.

4.3.26 c11, Slave Port Control Register

The Slave Port Control Register characteristics are:

Purpose • Enables or disables TCM access to the AXI slave port in Privileged 
or User mode.

Base address

31 12 11 7 6 2 1 0

Reserved Size

Reserved
Enable

Table 4-44 ATCM Region Register bit assignments

Bits Name Function

[31:12] Base 
address

Base address. Defines the base address of the ATCM. The base address must be aligned to the size of the 
ATCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored. 
At reset, if LOCZRAMAm is set to:
0 = The initial base address is implementation-defined. See Configurable options on page 1-6
1 = The initial base address is 0x0.

[11:7] - UNP on reads, SBZ on writes.

[6:2] Size Size. Indicates the size of the ATCM on reads. On writes this field is ignored. See About the TCMs on 
page 8-13.

b00000 = 0KB, no TCM
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB

b00110 = 32KB
b00111 = 64KB
b01000 = 128KB
b01001 = 256KB

b01010 = 512kB
b01011 = 1MB
b01100 = 2MB
b01101 = 4MB
b01110 = 8MB.

[1] - SBZ. 

[0] Enable Enables or disables the ATCM.
0 = Disabled.
1 = Enabled. The reset value of this field is determined by the INITRAMAm input pin.
This bit is RAZ if the processor has been implemented or integrated without an ATCM.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-65
ID092411 Non-Confidential



System Control 
• Enables access to the cache RAMs through the AXI slave port. See 
c1, Auxiliary Control Register on page 4-41.

Usage constraints The Slave Port Control Register is:
• a read/write register 
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 4-45.

Figure 4-43 shows the Slave Port Control Register bit assignments.

Figure 4-43 Slave Port Control Register bit assignments

Table 4-45 shows the Slave Port Control Register bit assignments

To access the Slave Port Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c11, c0, 0 ; Read Slave Port Control Register
MCR p15, 0, <Rd>, c11, c0, 0 ; Write Slave Port Control Register

4.3.27 c13, FCSE PID Register

This processor does not support Fast Context Switch Extension (FCSE). 

The FCSE Process IDentifier (PID) Register is accessible in Privileged mode only. This register 
reads as zero and ignores writes. 

4.3.28 c13, Context ID Register

The CONTEXTIDR characteristics are:

Purpose • Holds a process IDentification (ID) value for the running process.
• The Embedded Trace Macrocell (ETM) and the debug logic use this 

register. The ETM can broadcast its value to indicate the process that 
is running. You must program each process with a unique number.

Reserved

31 2 1 0

Privileged access

AXI slave enable

Table 4-45 Slave Port Control Register bit assignments

Bits Name Function

[31:2] - RAZ/UNP.

[1] Privileged access Defines level of access for TCM accesses:
0 = Non-privileged and privileged access, reset value
1 = Privileged access only.

[0] AXI slave enable Enables or disables the AXI slave port for TCM accesses:
0 = Enables AXI slave port, reset value
1 = Disables AXI slave port.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-66
ID092411 Non-Confidential



System Control 
• Enables process dependent breakpoints and instructions.

Usage constraints The CONTEXTIDR is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes The CONTEXTIDR, bits [31:0] contain the process ID number.

To use the CONTEXTIDR, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 1 ; Read CONTEXTIDR
MCR p15, 0, <Rd>, c13, c0, 1 ; Write CONTEXTIDR

4.3.29 c13, Thread and Process ID Registers

The Thread and Process ID Registers provide locations to store the IDs of software threads and 
processes for Operating System (OS) management purposes.

The Thread and Process ID Registers are:
• three read/write registers:

— User read/write Thread and Process ID Register
— User read-only Thread and Process ID Register
— Privileged-only Thread and Process ID Register.

• each accessible in different modes:
— The User read/write register can be read and written in User and Privileged modes.
— The User read-only register can only be read in User mode, but can be read and 

written in Privileged modes.
— The Privileged-only register can be read and written in Privileged modes only.

To access the Thread and Process ID registers, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 2 ; Read User read/write Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 2 ; Write User read/write Thread and Proc. ID Register
MRC p15, 0, <Rd>, c13, c0, 3 ; Read User Read Only Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 3 ; Write User Read Only Thread and Proc. ID Register
MRC p15, 0, <Rd>, c13, c0, 4 ; Read Privileged Only Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 4 ; Write Privileged Only Thread and Proc. ID Register

Reading or writing the Thread and Process ID registers has no effect on processor state or 
operation. These registers provide OS support, and the OS must manage them.

You must clear the contents of all Thread and Process ID registers on process switches to 
prevent data leaking from one process to another. This is important to ensure the security of data. 
The reset value of these registers is 0.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-67
ID092411 Non-Confidential



System Control 
4.3.30 Validation Registers

The processor implements a set of validation registers. This section describes:
• c15, nVAL IRQ Enable Set Register
• c15, nVAL FIQ Enable Set Register on page 4-69
• c15, nVAL Reset Enable Set Register on page 4-70
• c15, VAL Debug Request Enable Set Register on page 4-71
• c15, VAL IRQ Enable Clear Register on page 4-72
• c15, nVAL FIQ Enable Clear Register on page 4-73
• c15, nVAL Reset Enable Clear Register on page 4-74
• c15, VAL Debug Request Enable Clear Register on page 4-75
• c15, Cache Size Override Register on page 4-76.

c15, nVAL IRQ Enable Set Register

The nVAL IRQ Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, to generate an interrupt 
request on overflow. If enabled, the interrupt request is signaled by 
nVALIRQm being asserted LOW.

Usage constraints The nVAL IRQ Enable Set Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-46.

Figure 4-44 shows the nVAL IRQ Enable Set Register bit assignments.

Figure 4-44 nVAL IRQ Enable Set Register bit assignments

Table 4-46 shows the nVAL IRQ Enable Set Register bit assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow IRQ request enables

Cycle count overflow IRQ request enable

Table 4-46 nVAL IRQ Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow IRQ request

[30: 3] Reserved UNP or SBZP
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-68
ID092411 Non-Confidential



System Control 
To access the nVAL IRQ Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 0 ; Read nVAL IRQ Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 0 ; Write nVAL IRQ Enable Set Register

On reads, this register returns the current setting. On writes, interrupt requests can be enabled 
by writing a 1 to the appropriate bits. If an interrupt request has been enabled it is disabled by 
writing to the nVAL IRQ Enable Clear Register, see c15, VAL IRQ Enable Clear Register on 
page 4-72.

If one or more of the IRQ request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then an IRQ request is indicated by nVALIRQm being asserted LOW. This 
signal might be passed to a system interrupt controller.

c15, nVAL FIQ Enable Set Register

The nVAL FIQ Enable Set Register are:

Purpose Enables any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, to generate an fast 
interrupt request on overflow. If enabled, the interrupt request is signaled 
by nVALFIQm being asserted LOW.

Usage constraints The nVAL FIQ Enable Set Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-47 on page 4-70.

Figure 4-45 shows the nVAL FIQ Enable Set Register bit assignments.

Figure 4-45 nVAL FIQ Enable Set Register bit assignments

[2] P2 PMXEVCNTR2 overflow IRQ request

[1] P1 PMXEVCNTR1 overflow IRQ request 

[0] P0 PMXEVCNTR0 overflow IRQ request

Table 4-46 nVAL IRQ Enable Set Register bit assignments (continued)

Bits Name Function

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow FIQ request enables

Cycle count overflow FIQ request enable
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-69
ID092411 Non-Confidential



System Control 
Table 4-47 shows the nVAL FIQ Enable Set Register bit assignments

To access the FIQ Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 1 ; Read FIQ Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 1 ; Write FIQ Enable Set Register

On reads, this register returns the current setting. On writes, interrupt requests can be enabled 
by writing a 1 to the appropriate bits. If an interrupt request has been enabled it is disabled by 
writing to the FIQ Enable Clear Register, see c15, nVAL FIQ Enable Clear Register on 
page 4-73.

If one or more of the FIQ request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then an FIQ request is indicated by nVALFIQm being asserted LOW. This 
signal can be passed to a system interrupt controller.

c15, nVAL Reset Enable Set Register

The nVAL Reset Enable Set Register is:

• A read/write register.

• Always accessible in Privileged mode. The PMUSERENR Register determines access in 
User mode, see c9, User Enable Register on page 6-16.

The nVAL Reset Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, to generate a reset request 
on overflow. If enabled, the reset request is signaled by nVALRESETm 
being asserted LOW.

Usage constraints The nVAL Reset Enable Set Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-48 on page 4-71.

Figure 4-46 on page 4-71 shows the nVAL Reset Enable Set Register bit assignments.

Table 4-47 nVAL FIQ Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow FIQ request 

[30:3] Reserved UNP or SBZP

[2] P2 PMXEVCNTR2 overflow FIQ request

[1] P1 PMXEVCNTR1 overflow FIQ request

[0] P0 PMXEVCNTR0 overflow FIQ request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-70
ID092411 Non-Confidential



System Control 
Figure 4-46 nVAL Reset Enable Set Register bit assignments

Table 4-48 shows the nVAL Reset Enable Set Register bit assignments.

To access the nVAL Reset Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 2 ; Read nVAL Reset Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 2 ; Write nVAL Reset Enable Set Register

On reads, this register returns the current setting. On writes, reset requests can be enabled by 
writing a 1 to the appropriate bits. If a reset request has been enabled, it is disabled by writing 
to the nVAL Reset Enable Clear Register. See c15, nVAL Reset Enable Clear Register on 
page 4-74.

If one or more of the reset request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then a reset request is indicated by nVALRESETm being asserted LOW. 
This signal can be passed to a system reset controller.

c15, VAL Debug Request Enable Set Register

The VAL Debug Request Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, to generate a debug 
request on overflow. If enabled, the debug request is signaled by 
VALEDBGRQm being asserted HIGH.

Usage constraints The VAL Debug Request Enable Set Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-49 on page 4-72.

Figure 4-47 on page 4-72 shows the VAL Debug Request Enable Set Register bit assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow reset request enables

Cycle count overflow reset request enable

Table 4-48 nVAL Reset Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow reset request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow reset request 

[1] P1 PMXEVCNTR1 overflow reset request

[0] P0 PMXEVCNTR0 overflow reset request 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-71
ID092411 Non-Confidential



System Control 
Figure 4-47 VAL Debug Request Enable Set Register bit assignments

Table 4-49 shows the VAL Debug Request Enable Set Register bit assignments.

To access the VAL Debug Request Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 3 ; Read VAL Debug Request Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 3 ; Write VAL Debug Request Enable Set Register

On reads, this register returns the current setting. On writes, debug requests can be enabled by 
writing a 1 to the appropriate bits. If a debug request has been enabled, it is disabled by writing 
to the VAL Debug Request Enable Clear Register. See c15, VAL Debug Request Enable Clear 
Register on page 4-75.

If one or more of the reset request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then a debug reset request is indicated by VALEDBGRQm being asserted 
HIGH. This signal can be passed to an external debugger.

c15, VAL IRQ Enable Clear Register

The VAL IRQ Enable Clear Register characteristics are:

Purpose Disables overflow IRQ requests from any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, for which they have been 
enabled.

Usage constraints The VAL IRQ Enable Clear Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-50 on page 4-73.

Figure 4-48 on page 4-73 shows the VAL IRQ Enable Clear Register bit assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow debug request enables

Cycle count overflow debug  request enable

Table 4-49 VAL Debug Request Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow debug request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow debug request

[1] P1 PMXEVCNTR1 overflow debug request

[0] P0 PMXEVCNTR0 overflow debug request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-72
ID092411 Non-Confidential



System Control 
Figure 4-48 VAL IRQ Enable Clear Register bit assignments

Table 4-50 shows the VAL IRQ Enable Clear Register bit assignments.

To access the VAL IRQ Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 4 ; Read VAL IRQ Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 4 ; Write VAL IRQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are 
enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable IRQ requests on counter overflows, and how the requests 
are signaled, see c15, nVAL IRQ Enable Set Register on page 4-68.

c15, nVAL FIQ Enable Clear Register

The nVAL FIQ Enable Clear Register characteristics are:

Purpose Disables overflow FIQ requests from any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2, and CCNT, that are enabled.

Usage constraints The nVAL FIQ Enable Clear Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-51 on page 4-74.

Figure 4-49 on page 4-74 shows the nVAL FIQ Enable Clear Register bit assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow IRQ request disables

Cycle count overflow
IRQ request disable

Table 4-50 VAL IRQ Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow IRQ request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow IRQ request 

[1] P1 PMXEVCNTR1 overflow IRQ request

[0] P0 PMXEVCNTR0 overflow IRQ request 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-73
ID092411 Non-Confidential



System Control 
Figure 4-49 nVAL FIQ Enable Clear Register bit assignments

Table 4-51 shows the nVAL FIQ Enable Clear Register bit assignments 

To access the FIQ Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 5 ; Read FIQ Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 5 ; Write FIQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are 
enabled can be disabled by writing a 1 to the appropriate bits.

For information on how to enable FIQ requests on counter overflows, and how the requests are 
signaled, see c15, nVAL FIQ Enable Set Register on page 4-69.

c15, nVAL Reset Enable Clear Register

The nVAL Reset Enable Clear Register characteristics are:

Purpose Disables overflow reset requests from any of the PMXEVCNTR 
Registers, PMXEVCNTR0-PMXEVCNTR2, and CCNT, that are 
enabled.

Usage constraints The nVAL Reset Enable Clear Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-52 on page 4-75.

Figure 4-50 on page 4-75 shows the nVAL Reset Enable Clear Register bit assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow FIQ  request disables

Cycle count overflow
FIQ request disable

Table 4-51 nVAL FIQ Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow FIQ request 

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow FIQ request

[1] P1 PMXEVCNTR1 overflow FIQ request

[0] P0 PMXEVCNTR0 overflow FIQ request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-74
ID092411 Non-Confidential



System Control 
Figure 4-50 nVAL Reset Enable Clear Register bit assignments

Table 4-52 shows the nVAL Reset Enable Clear Register bit assignments.

To access the nVAL Reset Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 6 ; Read nVAL Reset Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 6 ; Write nVAL Reset Enable Clear Register

On reads, this register returns the current setting. On writes, overflow reset requests that are 
enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable reset requests on counter overflows, and how the 
requests are signaled, see c15, nVAL Reset Enable Set Register on page 4-70.

c15, VAL Debug Request Enable Clear Register

The VAL Debug Request Enable Clear Register characteristics are:

Purpose Disables overflow debug requests from any of the PMXEVCNTR 
Registers, PMXEVCNTR0-PMXEVCNTR2, and CCNT, that are 
enabled.

Usage constraints The VAL Debug Request Enable Clear Register is:
• A read/write register.
• Always accessible in Privileged mode. The PMUSERENR Register 

determines access in User mode, see c9, User Enable Register on 
page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 4-53 on page 4-76.

Figure 4-51 on page 4-76 shows the VAL Debug Request Enable Clear Register bit 
assignments.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter overflow 
reset request disables

Cycle count overflow
reset request disable

Table 4-52 nVAL Reset Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow reset request 

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow reset request

[1] P1 PMXEVCNTR1 overflow reset request

[0] P0 PMXEVCNTR0 overflow reset request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-75
ID092411 Non-Confidential



System Control 
Figure 4-51 VAL Debug Request Enable Clear Register bit assignments

Table 4-53 shows the VAL Debug Request Enable Clear Register bit assignments.

To access the VAL Debug Request Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 7 ; Read VAL Debug Request Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 7 ; Write VAL Debug Request Enable Clear Register

On reads, this register returns the current setting. On writes, overflow debug requests that are 
enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable debug requests on counter overflows, and how the 
requests are signaled, see c15, VAL Debug Request Enable Set Register on page 4-71.

c15, Cache Size Override Register

The Cache Size Override Register characteristics are:

Purpose Overwrites the caches size fields in the main register. This enables you to 
choose a smaller instruction and data cache size than is implemented.

Usage constraints The Cache Size Override Register is:
• a write-only register
• only accessible in Privileged mode.

Configurations Available in all processor configurations.

Attributes See Table 4-54 on page 4-77.

Figure 4-52 shows the Cache Size Override Register bit assignments.

Figure 4-52  Cache Size Override Register bit assignments

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter overflow 
debug request disables

Cycle count overflow
debug request disable

Table 4-53 VAL Debug Request Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow debug request 

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR2 overflow debug request 

[1] P1 PMXEVCNTR1 overflow debug request 

[0] P0 PMXEVCNTR0 overflow debug request 

Icache

31 16 15 78 4 3 0

Reserved Dcache
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-76
ID092411 Non-Confidential



System Control 
Table 4-54 shows the Cache Size Override Register bit assignments.

Table 4-55 shows the encodings for the instruction and data cache sizes.

To access the Cache Size Override Register, write CP15 with:

MCR p15, 0, <Rd>, c15, c14, 0 ; Write Cache Size Override Register

Note
 The VAL Cache Size Override Register can only be used to select cache sizes for which the 
appropriate RAM has been integrated. Larger cache sizes require deeper data and tag RAMs, 
and smaller cache sizes require wider tag RAMs. Therefore, it is unlikely that you can change 
the cache size using this register except using a simulation model of the cache RAMs. ARM 
recommends that you read the CCSIDR to check the actual cache sizes after writing to the Cache 
Size Override Register.

4.3.31 Correctable Fault Location Register

The CFLR characteristics are:

Purpose Indicates the location of the last correctable error that occurred during 
cache or TCM operations.

Usage constraints The CFLR is:
• a read/write register
• accessible in Privileged mode only.
• not updated on:

— speculative accesses, for example, an instruction fetch for an 
instruction that is not executed because of a previous branch. 

— a TCM external error or external retry request.
• updated on:

— parity or ECC errors in the instruction cache
— single-bit ECC errors in the data cache

Table 4-54  Cache Size Override Register bit assignments

Bits Name Function

[31:8] - SBZ.

[7:4] Dcache Defines the data cache size. See Table 4-55.

[3:0] Icache Defines the instruction cache size. See Table 4-55.

Table 4-55 Instruction and data cache size encodings

Encoding Cache size

b0000 4kB

b0001 8kB

b0011 16kB

b0111 32kB

b1111 64kB
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-77
ID092411 Non-Confidential



System Control 
— parity or multi-bit errors in the data cache when write-through 
behavior is forced

— single-bit TCM ECC errors.
• updated by the processor, regardless of whether an abort is taken or 

an access is retried in response to the error.

Configurations Available in all processor configurations.

Attributes See Table 4-56.

Every correctable error that causes a CFLR update also has an associated event. See Table 6-1 
on page 6-2 for the events that are related to CFLR updates. If two correctable errors occur 
simultaneously, for example an AXI slave error and an LSU or PFU error, the LSU or PFU write 
takes priority. If multiple errors occur, the value in the CFLR reflects the location of the latest 
event.

The same register is updated by all correctable errors. You can read bits [25:24] to determine 
whether the error was from a cache or TCM access. 

Figure 4-53 shows the CFLR bit assignments, when it indicates a correctable cache error.

Figure 4-53 Correctable Fault Location Register - cache, bit assignments

Table 4-56 shows the CFLR bit assignments, when it indicates a correctable cache error.,

Figure 4-54 on page 4-79 shows the CFLR bit assignments, when it indicates a correctable TCM 
error.

Side Reserved Type

31 30 29 26 25 24 23 14 13 5 4 2 1 0

Way Index

Reserved Reserved

Table 4-56 Correctable Fault Location Register - cache, bit assignments

Bits Name Function

[31:30] - RAZ.

[29:26] Way Indicates the Way of the error.

[25:24] Side Indicates the source of the error. For cache errors, this value is always 0b00.

[23:14] - RAZ.

[13:5] Index Indicates the index of the location where the error occurred.

[4:2] - RAZ.

[1:0] Type Indicates the type of access that caused the error:
0b00 = Instruction cache
0b01 = Data cache
0b11 = ACP.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-78
ID092411 Non-Confidential



System Control 
Figure 4-54 Correctable Fault Location Register - TCM, bit assignments

Table 4-57 shows the CFLR bit assignments, when it indicates a correctable TCM error.

To access the Correctable Fault Location Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c3, 0 ; Read CFLR
MCR p15, 0, <Rd>, c15, c3, 0 ; Write CFLR

4.3.32 Build Options Registers

Note
 In a twin-CPU system, some options can be configured independently for each CPU. For these 
options, the Options Register reflects the options for the CPU containing the register. Other 
options are shared, and the options register contains the same value for both CPUs.

c15, Build Options 1 Register

The Build Options 1 Register characteristics are:

Purpose Reflects the build configuration options used to build the processor.

Usage constraints The Build Options 1 Register is:
• a read-only register
• accessible in Privileged mode only
• pin-configuration options are shown in a separate register, see Pin 

Options Register on page 4-83.

Configurations Available in all processor configurations.

Type 

31 26 25 24 23 22 3 2 1 0

Reserved Side Address[22:3]

Reserved Reserved

Table 4-57 Correctable Fault Location Register - TCM, bit assignments

Bits Name Function

[31:26] - RAZ.

[25:24] Side Indicates the source of the error:
0b01 = ATCM
0b10 = BTCM.

[23] - RAZ.

[22:3] Address Indicates the address in the TCM where the error occurred.

[2] - RAZ.

[1:0] Type Indicates the type of access that caused the error:
0b00 = Instruction
0b01 = Data
0b10 = AXI slave.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-79
ID092411 Non-Confidential



System Control 
Attributes See Table 4-58.

Figure 4-55 shows the Build Options 1 Register bit assignments.

Figure 4-55 Build Options 1 Register bit assignments

Table 4-58 shows the Build Options 1 Register bit assignments.

To access the Build Options 1 Register, read CP15 with:

MRC p15, 0, <Rd>, c15, c2, 0 ; Read Build Options 1 Register 

c15, Build Options 2 Register

The Build Options 2 Register characteristics are:

Purpose Reflects the build configuration options used to build the processor.

Usage constraints The Build Options 2 Register is:
• a read-only register
• accessible in Privileged mode only.
• pin-configuration options are shown in a separate register, see Pin 

Options Register on page 4-83.

Configurations Available in all processor configurations.

Attributes See Table 4-58.

Table 4-59 on page 4-81 shows the bit arrangement for the Build Options 2 Register.

TCM_HI_INIT_ADDR

31 11 10 0

Reserved

1

PP_BUS_ECC

2

FLOAT_PRECISION

Table 4-58 Build Options 1 Register bit assignments

Bits Name Function

[31:12] TCM_HI_INIT_ADDR Default high address for the TCM.

[11:2] - SBZ.

[1] FLOAT_PRECISION Indicates whether double-precision floating point is implemented:
0 = Double-precision FP implemented, or no FPU implemented
1 = No double-precision FP implemented.

[0] PP_BUS_ECC Indicates whether the peripheral ports were built with bus-ECC:
0 = bus-ECC not included on peripheral ports
1 = bus-ECC included on peripheral ports.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-80
ID092411 Non-Confidential



System Control 
Figure 4-56 Build Options 2 Register bit assignments

Table 4-59 shows how the bit values correspond with the Build Options 2 Register.

31 25 24 23 22 21 19 17 16 14 13 12 11 7 6 3 026272830 29 1020 9 458

NUM_CPU
LOCK_STEP
NO_ICACHE

NO_DCACHE
ATCM_ES
BTCM_ES

NO_IE
NO_FPU

MPU_REGIONS
BREAK_POINTS
WATCH_POINTS
NO_A_TCM_INF

NO_B0_TCM_INF
NO_B1_TCM_INF
TCMBUSPARITY

NO_AXIS
ICACHE_ES

DCACHE_ES
N0_HARD_ERROR_CACHE

AXI_BUS_ECC

2

MICRO_SCU

SL
AHB_PP

Table 4-59 Build Options 2 Register bit assignments

Bits Name Function

[31] NUM_CPU Indicates the number of CPUs:
0 = single CPU
1 = twin CPU.

[30] LOCK_STEP Indicates whether the CPU has redundant logic running in lock step for checking 
purposes:
0 = no redundant logic
1 = redundant logic included.

[29] NO_ICACHE Indicates whether the CPU contains instruction cache:
0 = CPU contains instruction cache
1 = CPU does not contain instruction cache.

[28] NO_DCACHE Indicates whether the CPU contains data cache:
0 = CPU contains data cache
1 = CPU does not contain data cache.

[27:26] ATCM_ES Indicates whether an error scheme is implemented on the ATCM interface:
00 = no error scheme
10 = 32-bit error detection and correction
11 = 64-bit error detection and correction.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-81
ID092411 Non-Confidential



System Control 
[25:24] BTCM_ES Indicates whether an error scheme is implemented on the BTCM interface(s):
00 = no error scheme
10 = 32-bit error detection and correction
11 = 64-bit error detection and correction.

[23] NO_IE Indicates whether the processor supports big-endian instructions:
0 = processor supports big-endian instructions
1 = processor does not support big-endian instructions.

[22] NO_FPU Indicates whether the CPU contains a floating point unit:
0 = CPU contains a floating point unit
1 = CPU does not contain a floating point unit.

[21:20] MPU_REGIONS Indicates the number of regions in the included CPU MPU:
0b00 = no regions, the MPU has not been included
0b10 = MPU included, with 12 regions
0b11 = MPU included, with 16 regions.

[19:17] BREAK_POINTS Indicates the number of break points implemented in each CPU in the processor, minus 1.

[16:14] WATCH_POINTS Indicates the number of watch points implemented in each CPU in the processor, minus 1.

[13] NO_A_TCM_INF Indicates whether the CPUs contain ATCM ports
0 = CPUs contain ATCM ports
1 = CPUs do not contain ATCM ports.

[12] NO_B0_TCM_INF Indicates whether the CPUs contain B0TCM ports:
0 = CPUs contain B0TCM ports
1 = CPUs do not contain B0TCM ports.

[11] NO_B1_TCM_INF Indicates whether the CPUs contain B1TCM ports:
0 = CPUs contain B1TCM ports
1 = CPUs do not contain B1TCM ports.

[10] TCMBUSPARITY Indicates whether the processor contains TCM address bus parity logic:
0 = processor does not contain TCM address bus parity logic
1 = processor contains TCM address bus parity logic.

[9] NO_SLAVE Indicates whether the CPU contains an AXI slave port:
0 = CPU contains an AXI slave port
1 = CPU does not contain an AXI slave port.

[8:7] ICACHE_ES Indicates whether an error scheme is implemented for the instruction cache:
0b00 = no error scheme
0b01 = 8-bit parity error detection
0b11 = 64-bit error detection and correction.
If the CPU does not contain an I-Cache, these bits are set to 0b00.

[6:5] DCACHE_ES Indicates whether an error scheme is implemented for the data cache:
0b00 = no error scheme
0b01 = 8-bit parity error detection
0b10 = 32-bit error detection and correction.
If the CPU does not contain a D-Cache, these bits are set to 0b00.

Table 4-59 Build Options 2 Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-82
ID092411 Non-Confidential



System Control 
To access the Build Options 2 Register, read CP15 with:

MRC p15, 0, <Rd>, c15, c2, 1 ; Read Build Options 2 Register 

4.3.33 Pin Options Register

The Pin Options Register characteristics are:

Purpose Describes the value of any pins that control processor options, that are not 
visible because they:
• are exposed in registers
• control the initial value of control registers, and are visible in that 

way.

Usage constraints The Pin Options Register is:
• a read-only register
• accessible in Privileged modes only.

Configurations Available in all processor configurations.

Attributes See Table 4-60 on page 4-84.

Figure 4-57 on page 4-84 shows the Pin Options Register bit assignments. 

[4] NO_HARD_ERROR_CACHE Indicates whether the processor contains cache for corrected TCM errors:
0 = processor contains TCM error cache
1 = processor does not contain TCM error cache.

[3] AXI_BUS_ECC Indicates whether the processor contains AXI bus ECC logic.
0 = processor does not contain AXI bus ECC logic
1 = processor contains AXI bus ECC logic.

[2] SL Indicates whether the processor has been built with split/lock logic:
0 = no split/lock logic
1 = split/lock logic included.

[1] AHB_PP Indicates whether the CPU contain AHB peripheral interfaces:
0 = CPUs do not have AHB peripheral interfaces
1 = CPUs have AHB peripheral interfaces.

[0] MICRO_SCU Indicates whether the processor contains an ACP interface:
0 = processor does not contain ACP logic
1 = processor does contain ACP logic.

Table 4-59 Build Options 2 Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-83
ID092411 Non-Confidential



System Control 
Figure 4-57 Pin Options Register bit assignments

Table 4-60 shows the Pin Options Register bit assignments.

To access the Pin Options Register, read CP15 with:

MRC p15, 0, <Rd>, c15, c2, 7 ; Read Pin Options Register

4.3.34 Peripheral interface region registers

There are three peripheral interface region registers, one for each of the: 
• AHB peripheral interface
• LLPP Normal AXI
• LLPP Virtual AXI.

The Peripheral Interface Region Register characteristics are:

Purpose Describe the size and base of the interface, and contain an enable bit for 
the interface

Usage constraints The Peripheral Interface Region Registers are:
• Read/write registers.
• Accessible in Privileged mode only.
• The enable bits for the LLPP Normal AXI and AHB peripheral 

interface region registers are initialized immediately after reset, 
from the values on the INITPPXm and INITPPHm pins. 

• The LLPP Virtual AXI region register enable resets to zero.

Configurations Available in all processor configurations.

Attributes See Table 4-61 on page 4-85.

Figure 4-58 on page 4-85 shows the Peripheral Interface Region Register bit assignments.

0Reserved

31 5 4 3 2 1 0

0 0 0 0

DBGNOCLKSTOP
INTSYNCEN

IRQADDRVSYNCEN
SLBTCMSB

PARITYLEVEL

Table 4-60 Pin Options Register bit assignments

Bit Name Function

[31:5] - SBZ

[4] DBGNOCLKSTOP Read the value of the DBGNOCLKSTOP pin

[3] INTSYNCEN Read the value of the INTSYNCEN pin

[2] IRQADDRVSYNCEN Read the value of the IRQADDRVSYNCEN pin

[1] SLBTCMSB Read the value of the SLBTCMSBm pin

[0] PARITYLEVEL Read the value of the PARITYLEVEL pin
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-84
ID092411 Non-Confidential



System Control 
Figure 4-58 Peripheral Interface Region Register bit assignments

Table 4-61 shows the Peripheral Interface Region Register bit assignments.

To access the Peripheral Interface Region Registers, read CP15 with:

MRC p15, 0, <Rt>, c15, c0, 1; Read LLPP Normal AXI region register
MRC p15, 0, <Rt>, c15, c0, 2; Read LLPP Virtual AXI region register
MRC p15, 0, <Rt>, c15, c0, 3; Read AHB peripheral interface region register

EnBaseAddress

31 12 11 7 6 2 1 0

Reserved Size

Reserved

Table 4-61 Peripheral Interface Region Register bit assignments

Bit Name Type Function

[31:12] BaseAddress RO The base address of the interface, given as bits [31:12] of the address of the 
interface in the memory map. This value is configured during integration.

[11:7] - RO Reserved.

[6:2] Size RO Returns the size of the interface configured during integration:
0b00000 = no PP present
0b00011 = 4KB
...
0b10111 = 4GB

[1] - RO Reserved.

[0] En RW Interface enable bit:
0 = Disabled
1 = Enabled. The reset value of this bit is:
• for LLPP Normal AXI, determined by INITPPXm
• for LLPP Virtual AXI, always 0
• for AHB peripheral interface, determined by INITPPHm.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 4-85
ID092411 Non-Confidential



Chapter 5 
Prefetch Unit

This chapter describes how the PreFetch Unit (PFU), in conjunction with the DPU, uses 
program flow prediction to locate branches in the instruction stream and the strategies used to 
determine if a branch is likely to be taken or not. It contains the following sections:
• About the prefetch unit on page 5-2
• Branch prediction on page 5-3
• Return stack on page 5-5
• Controlling instruction prefetch and program flow prediction on page 5-6.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-1
ID092411 Non-Confidential



Prefetch Unit 
5.1 About the prefetch unit
The purpose of the PFU is to:

• perform speculative fetch of instructions ahead of the DPU by predicting the outcome of 
branch instructions

• format instruction data in a way that aids the DPU in efficient execution.

The PFU fetches instructions from the memory system under the control of the DPU, and the 
internal coprocessors CP14 and CP15. In ARM state the memory system can supply up to two 
instructions per cycle. In Thumb state the memory system can supply up to four instructions per 
cycle.

The PFU buffers up to three instruction data fetches in its FIFO. There is an additional FIFO 
between the PFU and the DPU that can normally buffer up to eight instructions. This reduces or 
eliminates stall cycles after a branch instruction. This increases the performance of the 
processor.

Program flow prediction occurs in the PFU by:

• predicting the outcome of conditional branches using the branch predictor and, for direct 
branches, calculating their destination address using the offset encoded in the instruction

• predicting the destination of procedure returns using the return stack.

The DPU resolves the program flow predictions that the PFU makes.

The PFU fetches the instruction stream as dictated by:
• the Program Counter
• the branch predictor
• procedure returns signaled by the return stack
• exceptions including aborts and interrupts signaled by the DPU
• correction of mispredicted branches as indicated by the DPU.

The PFU starts instruction fetches at a rate that is determined dynamically using a prediction 
scheme that aims to ensure that the pipeline is kept fed with instructions, without over-fetching 
instructions that are not used. Fetching of unused instructions consumes extra power and can 
impact performance.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-2
ID092411 Non-Confidential



Prefetch Unit 
5.2 Branch prediction
The PFU normally fetches instructions from sequential addresses. If a branch instruction is 
fetched, the next instruction to be fetched can only be determined with certainty after the 
instruction has completed execution at the end of the pipeline in the DPU. If the branch is taken, 
the next instruction to be executed is not sequential. The sequential instructions that the PFU 
has fetched while the branch instruction was executing must be flushed from the pipeline and 
the correct instruction fetched. This has the effect of reducing the performance of the processor.

The PFU can detect branches in the Pd-stage of the pipeline, predict whether or not the branch 
is taken, and determine or predict the target address for a taken branch. This enables the PFU to 
start fetching instructions at the destination of a taken branch before the branch has completed 
execution in the DPU. The branch instruction is still executed in the DPU to determine the 
accuracy of the prediction. If the branch was mispredicted, the pipeline must be flushed and the 
correct instruction fetched. In general, more branches are correctly predicted than mispredicted 
so fewer pipeline flushes occur and the performance of the processor is enhanced.

Two major classes of branch are addressed in the processor prediction scheme:

1. Direct branches, including B, BL, CZB, and BLX immediate, where the target address is a 
fixed offset, encoded in the instruction, from the program counter. If such an instruction 
has been fetched, and the program counter is known, predicting the destination of the 
branch only involves predicting whether the instruction passes or fails its condition code, 
that is, whether the branch is taken or not taken.

2. Indirect branches such as load and Branch and eXchange (BX), instructions that write to 
the PC, that can be identified as a likely return from a procedure call. Two identifiable 
cases are:
• loads to the PC from an address derived from R13 
• BX from R0-R14.
In these cases, if the calling operation can also be identified, the likely return address can 
be stored in the return stack. Typical calling operations are BL and BLX instructions. 

Note
 Unconditional instructions of either class of program flow are always executed, and do not 
affect prediction history. Unconditional return stack operations always affect the return stack.

This section describes:
• Branch predictor
• Incorrect predictions and correction on page 5-4.

5.2.1 Branch predictor

Branch prediction in the processor is dynamic and is based around a global history prediction 
scheme. In addition, there is extra logic to handle predictions that thrash and to predict the end 
of long loops. 

The global history scheme is an adaptive predictor that learns the behavior of branches during 
execution, identifying them based on the historical pattern of behavior of the preceding 
branches. For each pattern of branch behavior, the history table holds a 2-bit hint value. The 
2-bit hint indicates if the next branch must be predicted taken or predicted not-taken based on 
the behavior of previous branches. The history table contains 256 entries.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-3
ID092411 Non-Confidential



Prefetch Unit 
For loops beyond a certain number of iterations, the branch history is not large enough to learn 
the history and predict the loop exit. The PFU includes logic to count the number of iterations 
(up to 31) of a loop, and thereby predict the not-taken branch that exits the loop. If the number 
of iterations taken exceeds 31, the loop branch is never predicted as not-taken.

If multiple branch histories index into the same hint value, this can cause thrashing in the history 
table and reduce accuracy of the branch predictor. Logic in the branch predictor detects these 
cases and provides some hysteresis for the hint value.

For direct branches, the target address is calculated statically from the instruction encoding and 
the program counter. For indirect branches, the hint value predicts if the branch is taken or 
not-taken, and the return stack can sometimes be used to predict the target address. When the 
destination of a branch cannot be calculated statically, or popped from the return stack, PFU 
assumes the branch to be not-taken.

The PFU updates the history for each occurrence of a branch when the DPU indicates how the 
branch was resolved.

5.2.2 Incorrect predictions and correction

The DPU resolves branches that the dynamic branch predictor predicts at the Wr-stage of the 
pipeline, see Figure 2-1 on page 2-2. A misprediction causes the PFU to flush the pipeline and 
fetch the correct instruction stream.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-4
ID092411 Non-Confidential



Prefetch Unit 
5.3 Return stack
The call-return stack predicts procedural returns that are program flow changes such as loads, 
and branch register. The dynamic branch predictor determines if conditional procedure returns 
are predicted as taken or not-taken, as described in Branch prediction on page 5-3. The return 
stack predicts the target address for unconditional procedure returns, and conditional procedure 
returns that have been predicted as taken by the branch predictor.

The return stack consists of a 4-entry circular buffer. When the PFU detects a taken procedure 
call instruction, the PFU pushes the return address onto the return stack. The instructions that 
the PFU recognizes as procedure calls are, in both the ARM and Thumb instruction sets:
• BL immediate
• BLX immediate
• BLX Rm.

When the return stack detects a taken return instruction, the PFU issues an instruction fetch from 
the location at the top of the return stack, and pops the return stack. The instructions that the 
PFU recognizes as procedure returns are, in both the ARM and Thumb instruction sets:
• LDM Rn{!}, {..,pc}

• POP {..,pc}

• LDMIB Rn{!}, {..,pc}

• LDMDA Rn{!}, {..,pc}

• LDMDB Rn{!}, {..,pc}

• LDR pc, [sp], #4

• BX Rm.

Return stack mispredictions can exist when:

• The prediction that a conditional return passed or failed its condition code is not correct.

• The return address of an unconditional or predicted-taken return is not correct. 

The return stack has no underflow or overflow detection. Either scenario is likely to cause a 
misprediction.

Note
 The MOV PC, LR instruction is not decoded and is not predicted as a return.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-5
ID092411 Non-Confidential



Prefetch Unit 
5.4 Controlling instruction prefetch and program flow prediction
In the Cortex-R5 processor, the Z-bit, bit [11] of the SCTLR, does not control the program flow 
prediction. The Z-bit is read-as-one, writes-ignored and instead a number of control bits in the 
Auxiliary Control Register control the program flow and prefetch features. To disable the 
program flow prediction, you must disable the return stack and set the branch prediction policy 
to always not-taken. See c1, Auxiliary Control Register on page 4-41.

The fetch rate predictor can be disabled by setting FRCDIC in the Auxiliary Control Register. 
When the predictor is disabled, the PFU fetches instructions at the fastest rate possible.

The dynamic branch predictor is controlled with the BP field in the Auxiliary Control Register. 
In normal operation the branch prediction is taken from the global history table. You can also 
force the prediction to be always taken, or always not-taken. When the prediction is forced to a 
fixed direction, the processor does not update the global history table, and the historic pattern 
of branches is frozen. You can also disable the loop prediction logic and the logic for preventing 
thrashing, by setting DEOLP and DBHE respectively.

You can disable the return stack by setting RSDIS in the Auxiliary Control Register. When 
disabled, pushes onto the stack caused by call instructions are disabled and the stack pointer is 
frozen.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 5-6
ID092411 Non-Confidential



Chapter 6 
Events and Performance Monitor

This chapter describes the Performance Monitoring Unit (PMU) and event bus interface. It 
contains the following sections:
• About the events on page 6-2
• About the PMU on page 6-6
• Performance monitoring registers on page 6-7
• Event bus interface on page 6-20.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-1
ID092411 Non-Confidential



Events and Performance Monitor 
6.1 About the events
The processor includes logic to detect various events that can occur, for example, a cache miss. 
These events provide useful information about the behavior of the processor that you can use 
when debugging or profiling code.

The events are made visible on an output event bus, EVNTBUSm, and can be counted using 
registers in the Performance Monitoring Unit (PMU). See Event bus interface on page 6-20 for 
more information about the event bus, and About the PMU on page 6-6 for more information 
about the PMU. Table 6-1 lists the events that are generated, along with the bit position of each 
event on the event bus, and the numbers that the PMU uses to refer the events. Event reference 
numbers that are not listed are Reserved. See Error detection events on page 8-36 for more 
information on the CFLR related events.

Table 6-1 Event bus interface bit functions

EVNTBUSm 
bit position Description CFLR 

update
Event Ref. 
Value

- Software increment. The register is incremented only on writes to the Software 
Increment Register. See c9, Software Increment Register on page 6-12.

- 0x00

[0] Instruction cache miss. 
Each instruction fetch from normal Cacheable memory that causes a refill from the level 
2 memory system generates this event. Accesses that do not cause a new cache refill, but 
are satisfied from refilling data of a previous miss are not counted. Where instruction 
fetches consist of multiple instructions, these accesses count as single events. CP15 
cache maintenance operations do not count as events.

- 0x01

[1] Data cache miss.
Each data read from or write to normal Cacheable memory that causes a refill from the 
level 2 memory system generates this event. Accesses that do not cause a new cache 
refill, but are satisfied from refilling data of a previous miss are not counted. Each access 
to a cache line to normal Cacheable memory that causes a new linefill is counted, 
including the multiple transactions of an LDM and STM. Write-through writes that hit in the 
cache do not cause a linefill and so are not counted. CP15 cache maintenance operations 
do not count as events.

- 0x03

[2] Data cache access.
Each access to a cache line is counted including the multiple transactions of an LDM, STM, 
or other operations. CP15 cache maintenance operations do not count as events.

- 0x04

[3] Data Read architecturally executed.
This event occurs for every instruction that explicitly reads data, including SWP.

- 0x06

[4] Data Write architecturally executed.
This event occurs for every instruction that explicitly writes data, including SWP.

- 0x07

[5] Instruction architecturally executeda. - 0x08

[6] Dual-issued pair of instructions architecturally executed. - 0x5e

[7] Exception taken.
This event occurs on each exception taken.

- 0x09

[8] Exception return architecturally executed.
This event occurs on every exception return, for example, “RFE, MOVS PC, LDM Rn, 
{..,PC}^”.

- 0x0A

[9] Change to Context ID executed. - 0x0B
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-2
ID092411 Non-Confidential



Events and Performance Monitor 
[10] Software change of PC, except by an exception, architecturally executed. - 0x0C

[11] B immediate, BL immediate or BLX immediate instruction architecturally executed (taken 
or not taken).

- 0x0D

[12] Procedure return architecturally executed, other than exception returns, for example, BZ 
Rm, "LDM Rn, {..,PC}". 
MOV PC, LR does not generate this event, because it is not predicted as a return.

- 0x0E

[13] Unaligned access architecturally executed. 
This event occurs for each instruction that was to an unaligned address that either 
triggered an alignment fault, or would have done so if the SCTLR A-bit had been set.

- 0x0F

[14] Branch mispredicted or not predicted. 
This event occurs for every pipeline flush caused by a branch.

- 0x10

- Cycle count. - 0x11

[15] Branches or other change in program flow that could have been predicted by the branch 
prediction resources of the processor.

- 0x12

[16] Stall because instruction buffer cannot deliver an instruction. 
This can indicate an instruction cache miss. This event occurs every cycle where the 
condition is present.

- 0x40

[17] Stall because of a data dependency between instructions.
This event occurs every cycle where the condition is present.

- 0x41

[18] Data cache write-back. 
This event occurs once for each line that is written back from the cache.

- 0x42

[19] External memory request.
Examples of this are cache refill, Non-cacheable accesses, write-through writes, cache 
line evictions (write-back).

- 0x43

[20] Stall because of LSU being busy. 
This event takes place each clock cycle where the condition is met. A high incidence of 
this event indicates the pipeline is often waiting for transactions to complete on the 
external bus.

- 0x44

[21] Store buffer was forced to drain completely.
Examples of this for Cortex-R5 are DMB, Strongly Ordered memory access, or similar 
events.

- 0x45

- The number of cycles FIQ interrupts are disabled. - 0x46

- The number of cycles IRQ interrupts are disabled. - 0x47

- ETMEXTOUTm[0]. - 0x48

- ETMEXTOUTm[1]. - 0x49

[22] Instruction cache tag RAM parity or correctable ECC error. Yes 0x4A

[23] Instruction cache data RAM parity or correctable ECC error. Yes 0x4B

[24] Data cache tag or dirty RAM parity error or correctable ECC error, from data-side or 
ACP.

Yes 0x4C

Table 6-1 Event bus interface bit functions (continued)

EVNTBUSm 
bit position Description CFLR 

update
Event Ref. 
Value
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-3
ID092411 Non-Confidential



Events and Performance Monitor 
[25] Data cache data RAM parity error or correctable ECC error. Yes 0x4D

[26] TCM fatal ECC error reported from the prefetch unit. - 0x4E

[27] TCM fatal ECC error reported from the load/store unit. - 0x4F

- Store buffer merge. - 0x50

- LSU stall caused by full store buffer. - 0x51

- LSU stall caused by store queue full. - 0x52

- Integer divide instruction, SDIV or UDIV, executed. - 0x53

- Stall cycle caused by integer divide. This includes the single stall cycle required for all 
divide instructions to write their result into the register bank.

- 0x54

- PLD instruction that initiates a linefill. - 0x55

- PLD instruction that did not initiate a linefill because of a resource shortage. - 0x56

- Non-cacheable access on AXI master bus. - 0x57

[28] Instruction cache access.
This is an analog to event 0x04.

- 0x58

- Store buffer operation has detected that two slots have data in same cache line but with 
different attributes.

- 0x59

[29] Dual issue case A (branch). - 0x5A

[30] Dual issue case B1, B2, F2 (load/store), F2D. - 0x5B

[31] Dual issue other case. - 0x5C

[32] Double-precision floating point arithmetic or conversion instruction executed. - 0x5D

[33] Data cache data RAM fatal ECC error. - 0x60

[34] Data cache tag/dirty RAM fatal ECC error, from data-side or ACP. - 0x61

[35] Processor livelock because of hard errors or exception at exception vector. - 0x62

[36] Unused. - 0x63

[37] ATCM multi-bit ECC error. - 0x64

[38] B0TCM multi-bit ECC error. - 0x65

[39] B1TCM multi-bit ECC error. - 0x66

[40] ATCM single-bit ECC error. - 0x67

[41] B0TCM single-bit ECC error. - 0x68

[42] B1TCM single-bit ECC error. - 0x69

[43] TCM correctable ECC error reported by load/store unit. Yes 0x6A

[44] TCM correctable ECC error reported by prefetch unit. Yes 0x6B

[45] TCM fatal ECC error reported by AXI slave interface. - 0x6C

Table 6-1 Event bus interface bit functions (continued)

EVNTBUSm 
bit position Description CFLR 

update
Event Ref. 
Value
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-4
ID092411 Non-Confidential



Events and Performance Monitor 
[46] TCM correctable ECC error reported by AXI slave interface. Yes 0x6D

- All correctable eventsb, OR of:
0x4A ICache tag
0x4B ICache data
0x4C DCache tag/dirty
0x4D DCache data
0x6A LSU TCM
0x6B PFU TCM
0x6D AXI-S TCM
0x70 bus-ECC

Yes 0x6E

- All fatal eventsb, OR of:
0x60 DCache tag
0x61 DCache tag/dirty
0x4E PFU TCM
0x4F LSU TCM
0x6C AXI-S TCM
0x71 bus -ECC

- 0x6F

[47] All correctable bus faultsb - 0x70

[48] All fatal bus faultsb - 0x71

[49] ACP D-Cache access, lookup or invalidate. - 0x72

[50] ACP D-Cache invalidate. - 0x73

- Cycle count - 0xFF

[51]-[54] Unused - -

a. If one of the event counters is configured to count this event, then the counter increases by two when a dual-issued pair of instructions are 
architecturally executed. The EVNTBUSm[5] signal is asserted for one cycle only in the same situation - use EVNTBUSm[6] to distinguish 
this situation.

b. This event is signalled when any one of a number of events occur. It is formed as a logical OR of the constituent events. This means that if 
two or more of the constituent events occur at the same time, the composite event is only signaled once and the event counter, if configured 
to count this event, is only incremented by one.

Table 6-1 Event bus interface bit functions (continued)

EVNTBUSm 
bit position Description CFLR 

update
Event Ref. 
Value
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-5
ID092411 Non-Confidential



Events and Performance Monitor 
6.2 About the PMU
The PMU consists of three event counting registers, one cycle counting register and 12 CP15 
registers, for controlling and interrogating the counters. The performance monitoring registers 
are always accessible in Privileged mode. You can use the User Enable (PMUSERENR) 
Register to make all of the performance monitoring registers, except for the Interrupt Enable 
Set (PMINTENSET), and Interrupt Enable Clear (PMINTENCLR) Registers, accessible in 
User mode. 

All three event counters are read and written through the same CP15 register. The Performance 
Counter Selection (PMSELR) Register determines which counter is read or written. The three 
Event Selection registers, one per counter, are read and written through one CP15 register in the 
same way. 

Using the control registers, you can enable or disable each of the event counters individually, 
and read and reset the overflow flag for each counter. Any or all of the counters can be enabled 
to assert an interrupt request output, nPMUIRQm, on overflow.

When the processor is in Debug halt state:
• the PMU does not count events
• events are not visible on the ETM interface
• the Cycle CouNT (PMCCNTR) register is halted.

For more information on Debug halt state see Chapter 12 Debug.

The PMU only counts events when non-invasive debug is enabled, that is, when either 
DBGENm or NIDENm inputs are asserted. The Cycle Count (PMCCNTR) Register is always 
enabled regardless of whether non-invasive debug is enabled, unless the DP bit of the PMCR 
register is set. See c9, Performance Monitor Control Register on page 6-7.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-6
ID092411 Non-Confidential



Events and Performance Monitor 
6.3 Performance monitoring registers
The performance monitoring registers are described in:
• c9, Performance Monitor Control Register
• c9, Count Enable Set Register on page 6-8
• c9, Count Enable Clear Register on page 6-9
• c9, Overflow Flag Status Register on page 6-11
• c9, Software Increment Register on page 6-12
• c9, Performance Counter Selection Register on page 6-12
• c9, Cycle Count Register on page 6-13
• c9, Event Type Selection Register on page 6-14
• c9, Event Count Registers on page 6-16
• c9, User Enable Register on page 6-16
• c9, Interrupt Enable Set Register on page 6-17
• c9, Interrupt Enable Clear Register on page 6-18.

6.3.1 c9, Performance Monitor Control Register

The PMCR Register characteristics are:

Purpose Controls the operation of the three count registers, and the PMCCNTR 
Register.

Usage constraints The PMCR Register is:
• a read/write register
• accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-2 on page 6-8.

Figure 6-1 shows the bit assignments.

Figure 6-1 PMCR Register bit assignments

D C P EIMP

31 11 6 4 3 2 1 0

IDCODE N

10

Reserved D
P

5

X

24 23 16 15
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-7
ID092411 Non-Confidential



Events and Performance Monitor 
Table 6-2 shows the bit assignments.

The PMCR Register is always accessible in Privileged mode. To access the register, read or 
write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 0 ; Read PMCR Register
MCR p15, 0, <Rd>, c9, c12, 0 ; Write PMCR Register

6.3.2 c9, Count Enable Set Register

The PMCNTENSET Register characteristics are:

Purpose Enables the Event Count Registers. 

Usage constraints The PMCNTENSET Register is:
• accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.

Table 6-2 PMCR Register bit assignments

Bits Name Function

[31:24] IMP Implementer code:
0x41 = ARM

[23:16] IDCODE Identification code:
0x15 = Cortex-R5

[15:11] N Specifies the number of counters implemented:
0x3 = three counters implemented

[10: 6] Reserved RAZ on reads, Should Be Zero or Preserved (SBZP) on writes

[5] DP Disable PMCCNTR when prohibited, that is, when non-invasive debug is not enabled:
0 = Count is enabled in prohibited regions. This is the reset value.
1 = Count is disabled in prohibited regions.

[4] X Enable export of the events to the event bus for an external monitoring block, for example the 
ETM, to trace events:
0 = Export disabled. This is the reset value.
1 = Export enabled.

[3] D Cycle count divider:
0 = Counts every processor clock cycle. This is the reset value.
1 = Counts every 64th processor clock cycle.

[2] C Cycle counter reset:
Write one to this bit to reset the cycle counter, PMCCNTR, to zero.
This bit Reads-As-Zero.

[1] P Event counter reset: 
Write one to this bit to reset all event counters to zero.
This bit Reads-As-Zero.

[0] E Enable:
0 = Disable all counters, including PMCCNTR. This is the reset value.
1 = Enable all counters including PMCCNTR.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-8
ID092411 Non-Confidential



Events and Performance Monitor 
• The values in this register are ignored unless the E bit, bit [0], is set 
in the PMCR Register, see c9, Performance Monitor Control 
Register on page 6-7.

Configurations Available in all processor configurations.

Attributes See Table 6-3.

Figure 6-2 shows the bit assignments.

Figure 6-2 PMCNTENSET Register bit assignments

Table 6-3 shows the bit assignments.

To access the PMCNTENSET Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 1 ; Read PMCNTENSET Register
MCR p15, 0, <Rd>, c9, c12, 1 ; Write PMCNTENSET Register

When reading this register, any enable that reads as 0 indicates the corresponding counter is 
disabled. Any enable that reads as 1 indicates the corresponding counter is enabled. 

Writing a 1 to a particular count enable bit enables that counter. Writing a 0 to a count enable 
bit has no effect. You must use the Count Enable Clear Register to disable the counters. All 
counters are disabled at reset.

The PMCNTENSET Register retains its value when the enable bit of the PMCR is clear, even 
though its settings are ignored.

6.3.3 c9, Count Enable Clear Register

The PMCNTENCLR Register characteristics are:

Purpose Disables any of the Event Count Registers.

Usage constraints The PMCNTENCLR Register is:
• accessible in:

— Privileged mode

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor
counter enables

Cycle count enable

Table 6-3 PMCNTENSET Register bit assignments

Bits Name Function

[31] C Cycle counter enable

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable

[1] P1 Counter 1 enable

[0] P0 Counter 0 enable
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-9
ID092411 Non-Confidential



Events and Performance Monitor 
— User mode only when the PMUSERENR.EN bit is set to 1, 
see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-4.

Figure 6-3 shows the bit assignments.

Figure 6-3 PMCNTENCLR Register bit assignments

Table 6-4 shows the bit assignments.

To access the PMCNTENCLR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 2 ; Read PMCNTENCLR Register
MCR p15, 0, <Rd>, c9, c12, 2 ; Write PMCNTENCLR Register

When reading this register, any enable that reads as 0 indicates the corresponding counter is 
disabled. Any enable that reads as 1 indicates the corresponding counter is enabled.

When writing this register, any enable written with a value of 0 is ignored, that is, not updated. 
Any enable written with a value of 1 clears the counter enable. You must use the Count Enable 
Set Register to enable the counters. All counters are disabled at reset.

Writing to bits in this register disables individual counters, and clears the corresponding bits in 
the PMCNTENSET Register, see c9, Count Enable Set Register on page 6-8. 

You can use the enable, EN, bit [0] of the PMCR Register to disable all performance counters 
including PMCCNTR, see c9, Performance Monitor Control Register on page 6-7. 

The PMCNTENCLR and PMCNTENSET Registers retain their values when the enable bit of 
the PMCR is clear, even though their settings are ignored. The PMCNTENCLR Register can be 
used to clear the enabled flags for individual counters even when all counters are disabled in the 
PMCR Register.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor
counter disables

Cycle count disable

Table 6-4 PMCNTENCLR Register bit assignments

Bits Name Function

[31] C Cycle counter disable:

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable

[1] P1 Counter 1 enable

[0] P0 Counter 0 enable
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-10
ID092411 Non-Confidential



Events and Performance Monitor 
6.3.4 c9, Overflow Flag Status Register

The PMOVSR Register characteristics are:

Purpose Indicates if event counters have overflowed. All overflow flags are reset 
to zero.

Usage constraints The PMOVSR Register is accessible in:
• Privileged mode
• User mode only when the PMUSERENR.EN bit is set to 1, see c9, 

User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-5.

Figure 6-4 shows the bit assignments.

Figure 6-4 PMOVSR Register bit assignments

Table 6-5 shows the bit assignments.

To access the PMOVSR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 3 ; Read PMOVSR Register
MCR p15, 0, <Rd>, c9, c12, 3 ; Write PMOVSR Register

If an overflow flag is set to 1 in the PMOVSR register it remains set until one of the following 
happens:
• writing 1 to the flag bit in the PMOVSR Register clears the flag
• the processor is reset.

The following operations do not clear the overflow flags:
• disabling the overflowed counter in the PMCNTENCLR Register
• disabling all counters in the PMCR Register
• resetting the overflowed counter using the PMCR Register.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter
overflow flags

Cycle count overflow

Table 6-5 PMOVSR Register bit assignments

Bits Name Function

[31] Cycle counter overflow Cycle counter overflow flag

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 overflow flag

[1] P1 Counter 1 overflow flag

[0] P0 Counter 0 overflow flag
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-11
ID092411 Non-Confidential



Events and Performance Monitor 
6.3.5 c9, Software Increment Register

The PMSWINC Register characteristics are:

Purpose Increments the count of an Event Count Register.

Usage constraints The PMSWINC Register is:
• A write-only register that Reads-As-Zero
• Accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.
• You must only use the PMSWINC Register to increment Event 

Count Registers when the counter event is set to 0x00, software 
count, in the Event Select Register, see c9, Event Type Selection 
Register on page 6-14.
If you attempt to use the PMSWINC Register to increment an Event 
Count Register when the counter event is set to a value other than 
0x00 the result is Unpredictable.

Configurations Available in all processor configurations.

Attributes See Table 6-6.

Figure 6-5 shows the bit assignments.

Figure 6-5 PMSWINC Register bit assignments

Table 6-6 shows the bit assignments.

To access the PMSWINC Register, write CP15 with:

MCR p15, 0, <Rd>, c9, c12, 4 ; Write PMSWINC Register

6.3.6 c9, Performance Counter Selection Register

The PMSELR Register characteristics are:

Purpose • selects an Event Count Register.

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counters
software increment bits

Table 6-6 PMSWINC Register bit assignments

Bits Name Function

[31:3] Reserved RAZ on reads, SBZP on writes

[2] P2 Increment Counter 2

[1] P1 Increment Counter 1

[0] P0 Increment Counter 0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-12
ID092411 Non-Confidential



Events and Performance Monitor 
• determines which count register is accessed or controlled by 
accesses to the Event Selection Register and the Event Count 
Register.

Usage constraints The PMSELR Register is:
• A read/write register.
• Accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-7.

Figure 6-6 shows the bit assignments.

Figure 6-6 PMSELR Register bit assignments

Table 6-7 shows the bit assignments.

Any values programmed in the PMSELR Register other than those specified in Table 6-7 are 
Unpredictable.

To access the PMSELR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 5 ; Read PMSELR Register
MCR p15, 0, <Rd>, c9, c12, 5 ; Write PMSELR Register

6.3.7 c9, Cycle Count Register

The PMCCNTR Register characteristics are:

Purpose Counts clock cycles.

Usage constraints The PMCCNTR Register:
• Is a 32-bit read/write register.
• Is accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.

SEL

31 4 0

Reserved

5

Table 6-7 PMSELR Register bit assignments

Bits Name Function

[31:5] Reserved RAZ on reads, SBZP on writes

[4:0] SEL Counter select:
b00000 = selects counter 0
b00001 = selects counter 1
b00010 = selects counter 2.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-13
ID092411 Non-Confidential



Events and Performance Monitor 
• Must be disabled before software can write to it. Any attempt by 
software to write to this register when enabled is Unpredictable.

Configurations Available in all processor configurations.

To access the PMCCNTR read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 0 ; Read PMCCNTR Register
MCR p15, 0, <Rd>, c9, c13, 0 ; Write PMCCNTR Register

6.3.8 c9, Event Type Selection Register

There are three Event Type Select Registers in the processor, PMXEVTYPER0 to 
PMXEVTYPER2, each corresponding to one of the Performance Monitor Count 
(PMXEVCNTR) Registers, PMXEVCNTR0 to PMXEVCNTR2. The register to be accessed is 
determined by the value in the PMSELR.

The PMXEVTYPER Register characteristics are:

Purpose Selects the events you want a PMXEVCNTR Register to count.

Usage constraints The PMXEVTYPER Register is:
• A read/write register
• Accessible in:

— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, 

see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-8.

Figure 6-7 shows the bit assignments.

Figure 6-7 PMXEVTYPERx Register bit assignments

Table 6-8 shows the bit assignments.

To access the PMXEVTYPERx Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 1 ; Read PMXEVTYPERx Register
MCR p15, 0, <Rd>, c9, c13, 1 ; Write PMXEVTYPERx Register

The absolute counts of events recorded might vary because of pipeline effects. This has 
negligible effect except in cases where the counters are enabled for a very short time.

SEL

31 0

Reserved

8 7

Table 6-8 PMXEVTYPERx Register bit functions

Bits Name Function

[31:8] - RAZ or SBZP.

[7:0] SEL Event number selected, see Table 6-1 on page 6-2 for values.
The reset value of this field is Unpredictable.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-14
ID092411 Non-Confidential



Events and Performance Monitor 
In addition to the counters within the processor, most of the events that Table 6-1 on page 6-2 
shows are available to the ETM unit or other external trace hardware to enable monitoring of 
the events. For information on how to monitor these events, see the CoreSight ETM-R5 
Technical Reference Manual. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-15
ID092411 Non-Confidential



Events and Performance Monitor 
6.3.9 c9, Event Count Registers

There are three Event Count Registers (PMXEVCNTR0-PMXEVCNTR2) in the processor. 
Each PMXEVCNTR Register, as selected by the PMSELR Register, counts instances of an 
event selected by the corresponding PMXEVTYPER Register. The register to be accessed is 
determined by the value in the PMSELR.

Each PMXEVCNTR Register is:

• A 32-bit read/write register.

• Accessible in:
— Privileged mode
— User mode only when the PMUSERENR.EN bit is set to 1, see c9, User Enable 

Register.

To access the current Event Count Registers, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 2 ; Read current PMNx Register
MCR p15, 0, <Rd>, c9, c13, 2 ; Write current PMNx Register

6.3.10 c9, User Enable Register

The PMUSERENR Register characteristics are:

Purpose Enables User mode to have access to:
• the performance monitor registers, see Performance monitoring 

registers on page 6-7
• the validation registers, see Validation Registers on page 4-68.

Usage constraints The PMUSERENR Register:
• is a read/write register
• is writable only in Privileged mode, readable in any processor mode
• does not provide access to the registers that control interrupt 

generation.

Configurations Available in all processor configurations.

Attributes See Table 6-9 on page 6-17.

Figure 6-8 shows the bit assignments.

Figure 6-8 PMUSERENR Register bit assignments

31 1 0

Reserved

EN
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-16
ID092411 Non-Confidential



Events and Performance Monitor 
Table 6-9 shows the bit assignments.

If the EN bit in the PMUSERENR Register is not set, any attempt to access a performance 
monitor register or a validation register from User mode causes an Undefined Instruction 
exception.

Note
 For more information on access permissions to the performance monitor registers and validation 
registers, see the ARM Architecture Reference Manual. 

To access the PMUSERENR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 0 ; Read PMUSERENR Register
MCR p15, 0, <Rd>, c9, c14, 0 ; Write PMUSERENR Register

6.3.11 c9, Interrupt Enable Set Register

The PMINTENSET Register characteristics are:

Purpose Determines if any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2 and PMCCNTR, generate an interrupt 
request on overflow.

Usage constraints The PMINTENSET Register is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 6-10 on page 6-18.

Figure 6-9 shows the bit assignments.

Figure 6-9 PMINTENSET Register bit assignments

Table 6-9 PMUSERENR Register bit assignments

Bits Name Function

[31:1] Reserved RAZ or SBZP.

[0] EN User mode access to performance monitor and validation registers:
0 = Disabled. This is the reset value.
1 = Enabled.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow interrupt enables

Cycle count overflow interrupt enable
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-17
ID092411 Non-Confidential



Events and Performance Monitor 
Table 6-10 shows the bit assignments.

Reading this register returns the current setting, with a 1 in one of the counter bits indicating that 
interrupts are enabled for that counter. Writing a 1 to a particular interrupt bit enables interrupt 
generation on overflow of that counter. Writing a 0 has no effect. You can only disable interrupts 
by writing to the PMINTENCLR Register.

To access the Interrupt Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 1 ; Read PMINTENSET Register
MCR p15, 0, <Rd>, c9, c14, 1 ; Write PMINTENSET Register

If this unit generates an interrupt, the processor asserts the pin nPMUIRQm. You can route this 
pin to an external interrupt controller for prioritization and masking. This is the only mechanism 
that signals this interrupt to the processor.

Note
 ARM expects that the Performance Monitor interrupt request signal, nPMUIRQm, connects to 
a system interrupt controller.

6.3.12 c9, Interrupt Enable Clear Register

The PMINTENCLR Register characteristics are:

Purpose Determines if any of the PMXEVCNTR Registers, 
PMXEVCNTR0-PMXEVCNTR2 and PMCCNTR, generate an interrupt 
request on overflow.

Usage constraints The PMINTENCLR Register is:
• a read/write register
• accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes See Table 6-11 on page 6-19.

Figure 6-10 on page 6-19 shows the bit assignments.

Table 6-10 PMINTENSET Register bit assignments

Bits Name Function

[31] C PMCCNTR overflow interrupt 

[30:3] Reserved UNP on reads, SBZP on write 

[2] P2 PMXEVCNTR2 overflow interrupt 

[1] P1 PMXEVCNTR1 overflow interrupt 

[0] P0 PMXEVCNTR0 overflow interrupt 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-18
ID092411 Non-Confidential



Events and Performance Monitor 
Figure 6-10 PMINTENCLR Register bit assignments

Table 6-11 shows the bit assignments.

Reading this register returns the current setting, with a 1 in one of the counter bits indicating that 
interrupts are enabled for that counter. Writing a 1 to a particular interrupt disable bit disables 
interrupt generation on overflow of that counter. Writing a 0 has no effect. You can only enable 
interrupt requests by writing to the PMINTENSET Register.

To access the PMINTENCLR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 2 ; Read PMINTENCLR Register
MCR p15, 0, <Rd>, c9, c14, 2 ; Write PMINTENCLR Register

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow interrupt disables

Cycle count overflow interrupt disable

Table 6-11 PMINTENCLR Register bit assignments

Bits Name Function

[31] C PMCCNTR overflow interrupt

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 PMXEVCNTR2 overflow interrupt

[1] P1 PMXEVCNTR1 overflow interrupt

[0] P0 PMXEVCNTR0 overflow interrupt
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-19
ID092411 Non-Confidential



Events and Performance Monitor 
6.4 Event bus interface
The event bus, EVNTBUSm, is used to signal when an event has occurred. The event bus 
includes most, but not all, of the events that can be counted by the performance monitoring unit. 
Each individual event is assigned to an individual bit of this bus, and this bit is asserted for one 
cycle each time the event occurs.

The event bus only signals events when it is enabled. Set the X bit in the Performance Monitor 
Control Register to enable the event bus. See c9, Performance Monitor Control Register on 
page 6-7.

See Table 6-1 on page 6-2 to see which bit of the event bus each event is signaled on.

Note
 If an event is being counted in the PMU, the count might not be incremented in exactly the same 
cycle that the event is signaled on the event bus.

6.4.1 Use of the event bus and counters

The event bus is designed to be connected to the ETM-R5, that enables processor events to 
trigger tracing for debug purposes. You can also connect it to event counting registers external 
to the processor, or to an interrupt generator.

Because each EVNTBUSm pin is only asserted for one cycle for each occurrence of the event, 
it is possible to create composite events by ORing various EVNTBUSm pins together. A 
composite event signal like this is asserted when any of the included events occur although, if 
multiple events occur in the same cycle, the composite event only occurs once.

The processor also has two event input pins, ETMEXTOUTm[1:0]. This bus is normally 
intended for connection to the ETM, and enables the Cortex-R5 performance monitor to count 
events generated by the ETM. These inputs can alternatively be used for composite events 
generated external to the processor.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 6-20
ID092411 Non-Confidential



Chapter 7 
Memory Protection Unit

This chapter describes the Memory Protection Unit (MPU). It contains the following sections:
• About the MPU on page 7-2
• Memory types on page 7-7
• Region attributes on page 7-8
• MPU interaction with memory system on page 7-9
• MPU faults on page 7-10
• MPU software-accessible registers on page 7-11.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-1
ID092411 Non-Confidential



Memory Protection Unit 
7.1 About the MPU
The MPU works with the L1 memory system to control accesses to and from L1 and external 
memory. For a full architectural description of the MPU, see the ARM Architecture Reference 
Manual.

The MPU enables you to partition memory into regions and set individual protection attributes 
for each region. The MPU supports zero, 12, or 16 memory regions.

Note
 If the MPU has zero regions, you cannot enable or program the MPU. Attributes are only 
determined from the default memory map when zero regions are implemented.

Each region is programmed with a base address and size, and the regions can be overlapped to 
enable efficient programming of the memory map. To support overlapping, the regions are 
assigned priorities, with region 0 having the lowest priority and region 15 having the highest. 
The MPU returns access permissions and attributes for the highest priority enabled region where 
the address hits.

The MPU is programmed using CP15 registers c1 and c6, see MPU control and configuration 
on page 4-3. Memory region control read and write access is permitted only from Privileged 
modes.

Table 7-1 shows the default memory map.

Table 7-1 Default memory map

Address 
range

Instruction memory type Data memory type 

Execute NeverInstruction 
cache enabled

Instruction 
cache disabled

Data cache 
enabled

Data cache 
disabled 

0xFFFFFFFF Normal 
Non-cacheable only 
if HIVECS is TRUE

Normal 
Non-cacheable only 
if HIVECS is TRUE

Strongly Ordered Strongly 
Ordered 

Instruction execution 
only permitted if 
HIVECS is TRUE0xF0000000

0xEFFFFFFF - - Strongly Ordered Strongly 
Ordered 

Execute Never

0xC0000000

0xBFFFFFFF - - Shared Device Shared 
Device

Execute Never

0xA0000000

0x9FFFFFFF - - Non-shared
Device

Non-shared
Device

Execute Never

0x80000000

0x7FFFFFFF Normal, Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Shared

Normal, 
Non-cacheable, 
Shared

Instruction execution 
permitted

0x60000000

0x5FFFFFF Normal, Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
WT Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Shared 

Instruction execution 
permitted

0x40000000

0x3FFFFFFF Normal, Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
WBWA Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Shared 

Instruction execution 
permitted

0x00000000
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-2
ID092411 Non-Confidential



Memory Protection Unit 
This section describes:
• Memory regions
• Overlapping regions on page 7-4
• Background regions on page 7-6
• TCM regions on page 7-6
• Peripheral port regions on page 7-6.

7.1.1 Memory regions

Before the MPU is enabled, you must program at least one valid protection region. If you do not 
do this, the processor enters a state that only reset can recover. 

When the MPU is disabled, no access permission checks are performed, and memory attributes 
are assigned according to the default memory map. See Table 7-1 on page 7-2.

For more information on how to enable or disable the MPU, see MPU interaction with memory 
system on page 7-9.

Depending on the implementation, the MPU has a maximum of 12 or 16 regions. Using CP15 
register c6 you can specify the following for each region:
• region base address
• region size
• subregion enables
• region attributes
• region access permissions
• region enable.

Region base address

The base address defines the start of the memory region. You must align this to a region-sized 
boundary. For example, if a region size of 8KB is programmed for a given region, the base 
address must be a multiple of 8KB. 

Note
 If the region is not aligned correctly, this results in Unpredictable behavior.

Region size

The region size is specified as a 5-bit value, encoding a range of values from 32 bytes, a 
cache-line length, to 4GB. Table 4-34 on page 4-56 shows the encoding.

Subregions

Each region can be split into eight equal sized non-overlapping subregions. An access to a 
memory address in a disabled subregion does not use the attributes and permissions defined for 
that region. Instead, it uses the attributes and permissions of a lower priority region or generates 
a background fault if no other regions overlap at that address. This enables increased protection 
and memory attribute granularity. 

All region sizes between 256 bytes and 4GB support eight subregions. Region sizes below 256 
bytes do not support subregions, and the subregion disable field is SBZ/UNP for regions of less 
than 256 bytes in size.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-3
ID092411 Non-Confidential



Memory Protection Unit 
Region attributes

Each region has a number of attributes associated with it. These control how a memory access 
is performed when the processor accesses an address that falls within a given region. The 
attributes are:
• Memory type, one of:

— Strongly Ordered
— Device
— Normal

• Shared or Non-shared
• Non-cacheable
• Write-through Cacheable
• Write-back Cacheable
• Read allocation
• Write allocation.

See Memory types on page 7-7 for more information about memory types, and Region attributes 
on page 7-8 for a description of how to assign types and attributes to a region.

Region access permissions

Each region can be given no access, read-only access, or read/write access permissions for 
Privileged or all modes. In addition, each region can be marked as eXecute Never (XN) to 
prevent instructions being fetched from that region.

For example, if a User mode application attempts to access a Privileged mode access only region 
a permission fault occurs. 

The ARM architecture uses constants known as inline literals to perform address calculations. 
The assembler and compiler automatically generate these constants and they are stored inline 
with the instruction code. To ensure correct operation, only a memory region that has permission 
for data read access can execute instructions. For more information, see the ARM Architecture 
Reference Manual. For information about how to program access permissions, see Table 4-38 
on page 4-58.

Instructions cannot be executed from regions with Device or Strongly-Ordered memory type 
attributes.

7.1.2 Overlapping regions

You can program the MPU with two or more overlapping regions. For overlapping regions, a 
fixed priority scheme determines attributes and permissions for memory access to the 
overlapping region. Attributes and permissions for region 15 take highest priority, those for 
region 0 take lowest priority. For example:

Region 2 Is 4KB in size, starting from address 0x3000. Privileged mode has full 
access, and User mode has read-only access.

Region 1 Is 16KB in size, starting from address 0x0000. Both Privileged and User 
modes have full access.

When the processor performs a data write to address 0x3010 while in User mode, the address 
falls into both region 1 and region 2, as Figure 7-1 on page 7-5 shows. Because these regions 
have different permissions, the permissions associated with region 2 are applied. Because User 
mode is read access only for this region, a permission fault occurs, causing a data abort.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-4
ID092411 Non-Confidential



Memory Protection Unit 
Figure 7-1 Overlapping memory regions

Example of using regions that overlap

You can use overlapping regions for stack protection. For example:

• allocate to region 1 the appropriate size for all stacks

• allocate to region 2 the minimum region size, 32 bytes, and position it at the end of the 
stack for the current process

• set the region 2 access permissions to No Access.

If the current process overflows the stack it uses, a write access to region 2 by the processor 
causes the MPU to raise a permission fault.

Figure 7-2 Overlay for stack protection

Example of using subregions

You can use subregions for stack protection. For example:

• Allocate to region 1 the appropriate size for all stacks.

• Set the least-significant subregion disable bit. That is, set the subregion disable field, bits 
[15:8], of the CP15 MPU Region Size Register to 0x01.

If the current process overflows the stack it uses, a write access by the processor to the disabled 
subregion causes the MPU to raise a background fault.

Region 2

Region 1

0x4000

0x0000

0x3000

0x3010

Region 1

0x4000

0x0000 Region 2
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-5
ID092411 Non-Confidential



Memory Protection Unit 
Figure 7-3 Overlapping subregion of memory

7.1.3 Background regions

Overlapping regions increase the flexibility of how the regions can be mapped onto physical 
memory devices in the system. You can also use the overlapping properties to specify a 
background region. For example, you might have a number of physical memory areas sparsely 
distributed across the 4GB address space. If a programming error occurs, the processor might 
issue an address that does not fall into any defined region.

If the address that the processor issues falls outside any of the defined regions and the MPU is 
enabled, the MPU is hard-wired to abort the access. That is, all accesses for an address that is 
not mapped to a region in the MPU generate a background fault. You can override this behavior 
by programming region 0 as a 4GB background region. In this way, if the address does not fall 
into any of the other 11 regions, the attributes and access permissions you specified for region 
0 control the access.

In Privileged modes, you can also override this behavior by setting the BR bit, bit [17], of the 
SCTLR. This causes Privileged accesses that fall outside any of the defined regions to use the 
default memory map.

7.1.4 TCM regions

Any memory address that you configure to be accessed using a TCM interface is given Normal, 
Non-shared type attributes, regardless of the attributes of any MPU region that the address also 
belongs to. Access permissions for an address in a TCM region are preserved from the MPU 
region that the address also belongs to. For more information, see About the TCMs on page 8-13.

7.1.5 Peripheral port regions

Any memory address accessed using one of the peripheral port interfaces is considered to be 
non-cacheable and eXecute-Never (XN), regardless of the attributes of any MPU region that the 
address also belongs to. The memory type and other access permissions for such a region are 
inherited from the MPU region that the address also belongs to. See Peripheral interface 
attributes and permissions on page 9-38.

Stack

0x4000

0x0000
Guard region

0x0800
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-6
ID092411 Non-Confidential



Memory Protection Unit 
7.2 Memory types
The ARM architecture defines a set of memory types with characteristics that are suited to 
particular devices. There are three mutually exclusive memory type attributes:
• Strongly Ordered
• Device
• Normal.

MPU memory regions can each be assigned a memory type attribute. Table 7-2 shows a 
summary of the memory types.

Note
 The processor’s L1 cache does not cache shared normal regions.

For more information on memory attributes and types, memory barriers, and ordering 
requirements for memory accesses, see the ARM Architecture Reference Manual.

7.2.1 Using memory types

All of the processor interfaces to the external memory system have associated store buffers that 
help to improve the throughput of accesses to Normal type memory. See Store buffer on 
page 8-18 and Peripheral interfaces on page 9-36 for more information. Because of the 
ordering rules that they must follow, accesses to other types of memory typically have a lower 
throughput or higher latency than accesses to Normal memory. In particular:

• reads from Device memory must first drain the relevant store buffer of all writes to Device 
memory and wait for all Device writes to the relevant interface that have been posted onto 
the bus to complete

• all accesses to Strongly Ordered memory must first drain the store buffer completely and 
wait for all writes that have been posted onto the buses to complete.

Similarly, when it is accessing Strongly Ordered or Device type memory, the processor's 
response to interrupts must be modified, and the interrupt response latency is longer. See Low 
interrupt latency on page 3-20 for more information.

To ensure optimum performance, you must understand the architectural semantics of the 
different memory types. Use Device memory type for appropriate memory regions, typically 
peripherals, and only use Strongly Ordered memory type for memory regions where it is 
essential.

Table 7-2 Memory attributes summary

Memory type 
attribute

Shared or 
Non-shared Description

Strongly Ordered - All memory accesses to Strongly Ordered memory occur in program order. 
All Strongly Ordered accesses are assumed to be shared.

Device Shared For memory-mapped peripherals that several processors share. 

Non-shared For memory-mapped peripherals that only a single processor uses.

Normal Shared For normal memory that is shared between several processors.

Non-shared For normal memory that only a single processor uses.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-7
ID092411 Non-Confidential



Memory Protection Unit 
7.3 Region attributes
Each region has a number of attributes associated with it. These control how a memory access 
is performed when the processor accesses an address that falls within a given region. The 
attributes are:
• Memory type, see Memory types on page 7-7, one of:

— Strongly Ordered
— Device
— Normal.

• Shared or Non-shared
• Non-cacheable
• Write-through cacheable
• Write-back cacheable
• Read allocation
• Write allocation.

The Region Access Control Registers use five bits to encode the memory region type. These are 
the TEX[2:0], C and B bits. Table 4-36 on page 4-57 shows the mapping of these bits to memory 
region attributes. 

Note
 In earlier versions of the architecture, the TEX, C, and B bits were known as the Type Extension, 
Cacheable and Bufferable bits. These names no longer adequately describe the function of the 
B, C, and TEX bits.

All memory attributes that are Cacheable, write-back or write-through, are also implicitly 
read-allocate. Table 4-36 on page 4-57 shows which attributes are write-allocate.

When the region attributes indicate that the inner cache policy is write-back, no write-allocate, 
the Cortex-R5 cache behaves as if the policy were write-back, write-allocate.

In addition, the Region Access Control Registers contain the shared bit, S. This bit only applies 
to Normal memory, and determines whether the memory region is Shared (1) or Non-shared (0).

When the processor performs a memory access through its AXI bus master interface:
• the Inner attributes are indicated on the A*INNERMm signals. 
• the Outer attributes are indicated on the A*CACHEMm signals. 

For the encodings, see Table 9-2 on page 9-7.

Similarly, for memory accesses performed through the AXI peripheral port, the Outer attributes 
are indicated on the A*CACHEPm signals.

For more information on region attributes, see the ARM Architecture Reference Manual.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-8
ID092411 Non-Confidential



Memory Protection Unit 
7.4 MPU interaction with memory system
This section describes how to enable and disable the MPU. After you enable or disable the 
MPU, the pipeline must be flushed using ISB and DSB instructions to ensure that all subsequent 
instruction fetches and data accesses see the effect of turning on or off the MPU.

Before you enable or disable the MPU you must:

1. Program all relevant CP15 registers. This includes setting up at least one memory region 
that covers the executing code, and that the attributes and permissions of that region are 
the same as the attributes and permissions of the region in the default memory map that 
covers the code, and that the region is executable in Privileged mode.

2. Clean and invalidate the data caches.

3. Disable caches.

4. Invalidate the instruction cache.

The following code is an example of enabling the MPU:

MRC p15, 0, R1, c1, c0, 0    ; read CP15 register 1
ORR R1, R1, #0x1
DSB
MCR p15, 0, R1, c1, c0, 0    ; enable MPU
ISB
Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map

The following code is an example of disabling the MPU:

MRC p15, 0, R1, c1, c0, 0    ; read CP15 register 1
BIC R1, R1, #0x1
DSB
MCR p15, 0, R1, c1, c0, 0    ; disable MPU 
ISB
Fetch from default memory map
Fetch from default memory map
Fetch from default memory map
Fetch from default memory map

Table 7-1 on page 7-2 shows the default memory map.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-9
ID092411 Non-Confidential



Memory Protection Unit 
7.5 MPU faults
The MPU can generate three types of fault:
• Background fault
• Permission fault
• Alignment fault.

When a fault occurs, the memory access or instruction fetch is synchronously aborted, and a 
prefetch abort or data abort exception is taken as appropriate. No memory accesses are 
performed on the AXI bus master interface or peripheral ports. For more information about fault 
handling, see Fault handling on page 8-7.

7.5.1 Background fault

A background fault is generated when the MPU is enabled and a memory access is made to an 
address that is not within an enabled subregion of an MPU region. A background fault does not 
occur if the background region is enabled and the access is Privileged. See Background regions 
on page 7-6.

7.5.2 Permission fault

A permission fault is generated when a memory access does not meet the requirements of the 
permissions defined for the memory region that it accesses. See Region access permissions on 
page 7-4.

7.5.3 Alignment fault

An alignment fault is generated if a data access is performed to an address that is not aligned for 
the size of the access, and strict alignment is required for the access. A number of instructions 
that access memory, for example, LDM and STC, require strict alignment. See the ARM 
Architecture Reference Manual for more information. In addition, strict alignment can be 
required for all data accesses by setting the A-bit in the SCTLR. See c1, System Control Register 
on page 4-38.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-10
ID092411 Non-Confidential



Memory Protection Unit 
7.6 MPU software-accessible registers
Figure 4-2 on page 4-3 shows the CP15 registers that control the MPU. 

When the MPU is not present, the c6, MPU memory region programming registers on page 4-53 
read as zero and ignore writes in Privileged mode. No Undefined Instruction exceptions are 
taken.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 7-11
ID092411 Non-Confidential



Chapter 8 
Level One Memory System

This chapter describes the processor Level one (L1) memory system. It contains the following 
sections:
• About the L1 memory system on page 8-2
• About the error detection and correction schemes on page 8-4
• Fault handling on page 8-7
• About the TCMs on page 8-13
• About the caches on page 8-18
• Internal exclusive monitor on page 8-34
• Memory types and L1 memory system behavior on page 8-35
• Error detection events on page 8-36.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-1
ID092411 Non-Confidential



Level One Memory System 
8.1 About the L1 memory system
The processor L1 memory system can be configured during implementation and integration. It 
can consist of:
• separate instruction and data caches
• multiple Tightly-Coupled Memory (TCM) areas
• a Memory Protection Unit (MPU).

The instruction-side and data-side can each optionally have their own L1 caches. The cache 
architecture is Harvard, that is, only instructions can be fetched from the I-Cache, and only data 
can be fetched from the D-Cache. In parallel with each of the caches are two areas of dedicated 
RAM accessible to both the instruction and data sides. These are regions of TCM. You can 
implement one TCM using the ATCM interface and up to two TCMs using the BTCM interface. 
Figure 8-1 on page 8-3 shows this. 

Memory accesses, required for fetching instructions and for data transfer instructions, are 
performed to the appropriate TCM if the address is in an enabled TCM region. Remaining 
instruction accesses and remaining data accesses that are not in a peripheral interface region are 
looked up in the appropriate L1 cache if they are cacheable. Accesses that are not serviced by 
the L1 memory system are passed to the L2 memory system through the AXI-master interface 
or one of the peripheral interfaces. See Chapter 9 Level Two Interface for more information 
about the L2 memory system.

Each TCM and cache can be configured at implementation time to have an error detection and 
correction scheme to protect the data stored in the memory from errors. Each TCM interface 
also has support for logic external to the processor to tell the processor that an error has 
occurred.

The MPU handles accesses to both the instruction and data sides. The MPU is responsible for 
protection checking, address access permissions, and memory attributes for all accesses. Some 
of these attributes can be passed to the L2 memory system through the AXI master or peripheral 
ports. See Chapter 7 Memory Protection Unit for more information about the MPU.

The L1 memory system includes a monitor for exclusive accesses. Exclusive load and store 
instructions, for example LDREX and STREX, can be used with the appropriate memory monitoring 
to provide inter-process or inter-processor synchronization and semaphores. See the ARM 
Architecture Reference Manual for more information. The internal monitor can handle some 
exclusive monitoring internally to the processor, see Internal exclusive monitor on page 8-34 for 
more information.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-2
ID092411 Non-Confidential



Level One Memory System 
Figure 8-1 Memory system block diagram

Interconnect

AXI slave PFULSU

AXI masters

D-cache 
control

I-cache 
control

AXI 
master 

interface

D-cache 
RAMs

I-cache 
RAMs

Level 2 memory system

Level 2 memory system

AXI 
peripheral 
interface

AXI virtual 
peripheral 
interface

AHB 
peripheral 
interface

AXI 
peripheral 

port

AHB 
peripheral 

port

Peripherals/ memory Peripherals/ memory

ATCM 
interface

BTCM 
interface

Cortex-R5 CPU

B1 RAM

B0 RAM

A RAM

Level 1 
memory 
system
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-3
ID092411 Non-Confidential



Level One Memory System 
8.2 About the error detection and correction schemes
In silicon devices, stray radiation and other effects can cause the data stored in a RAM to be 
corrupted. The TCMs and caches on a Cortex-R5 processor can be configured to detect and 
correct errors that can occur in the RAMs. Extra, redundant data is computed by the processor 
and stored in the RAMs alongside the real data. When the processor reads data from the RAMs, 
it checks that the redundant data is consistent with the real data and can either signal an error, 
or attempt to correct the error.

A number of different error schemes are available, and are described in:
• Parity
• 64-bit ECC on page 8-5
• 32-bit ECC on page 8-5.

Each has different properties in terms of the number of errors that can be detected, and corrected, 
and the amount of extra RAM required to store the redundant data. Because different logic is 
required for each scheme, the scheme must be chosen in the build-configuration, although you 
can enable or disable, or change the behavior of the error schemes using software-configuration. 
This section describes the generic properties of each of the schemes. See Appendix C ECC 
Schemes for more information about the advantages and disadvantages of each scheme to the 
implementer. Operation of the error schemes for the caches is described in Cache error 
detection and correction on page 8-20, and for the TCMs in TCM internal error detection and 
correction on page 8-14.

The error schemes are each described in terms of their operation on a doubleword, 64 bits, of 
data, because this is the amount of data that the processor L1 memory system can transfer each 
cycle. The tag and dirty RAMs associated with the caches are different sizes, but the principles 
are the same. An error is considered to be a single bit of data that has been inverted relative to 
its correct value.

Figure 8-2 shows the error schemes. The shaded areas represent bits with errors.

Figure 8-2 Error detection and correction schemes

8.2.1 Parity

For each byte, a parity bit is computed and stored with that byte. This requires eight bits of 
parity, or redundant data per doubleword. With a parity scheme, a single error in a byte or its 
parity bit can be detected, but not corrected. This means that, provided they are all in different 
bytes, eight errors can be detected per doubleword. However, if there are two errors in any 
individual byte, this cannot be detected. Odd or even parity can be used, and this can be 
pin-configured during integration.

Parity: one error per 
byte detected

64-bit ECC: one error 
per doubleword 

corrected

64-bit ECC: two 
errors per 

doubleword detected

32-bit ECC: two 
errors per word 

detected

32-bit ECC: one error 
per word corrected
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-4
ID092411 Non-Confidential



Level One Memory System 
8.2.2 Error checking and correction

The processor supports Error Checking and Correction (ECC) schemes for either 64-bits or 
32-bits of data, and these have similar properties, although though the size of the data chunk that 
the ECC scheme applies to is different. For each data chunk, either 32-bits or 64-bits, aligned, 
a number of redundant code bits are computed and stored with the data. This enables the 
processor to detect up to two errors in the data chunk or its code bits, and correct any single error 
in the data chunk or its associated code bits. This is sometimes referred to as a 
Single-Error-Correction, Double-Error-Detection (SEC-DED) ECC scheme.

If there are more than two errors in a data chunk and its associated code bits, they might or might 
not be detected. The error scheme might interpret such a condition as a single-error and make 
an unsuccessful attempt at a correction.

64-bit ECC

Eight code bits are computed for each 64 bits of data. The scheme can correct any single error 
occurring in any doubleword, and detect any two errors occurring in any doubleword.

32-bit ECC

Seven code bits are computed for each 32 bits of data, so 14 bits of redundant data are required 
for each doubleword. The scheme can correct two errors per doubleword, if they are in different 
words. Four errors can be detected per doubleword, if there are two in each word.

8.2.3 Read-Modify-Write

The smallest unit of data that the processor can write is a byte. However, both the ECC schemes 
are computed on data chucks that are larger than this. To write any data to a RAM protected with 
ECC requires the error code for that data to be recomputed and rewritten. If the entire data chunk 
is not written, for example, a halfword, 16-bits, is written to address 0x4 of a RAM with a 32-bit 
error scheme, the error code must be computed partly from the data being written, and partly 
from data already stored in the RAM. In this example, the halfword in the RAM at address 0x6. 

To compute the error code for such a write, the processor must first read data from the RAM, 
then merge the data to be written with it, to compute the error code, then write the data to the 
RAM, along with the new error code. This process is referred to as read-modify-write.

8.2.4 Hard errors

The errors described in this chapter are all assumed to be soft errors, that is, one or more bits of 
the data stored in a RAM chunk are inverted. A new value can still be written to the RAM and 
read back correctly, unless another soft error occurs in the meantime.

If the error in the memory is a hard error, that is, a physical failure of the RAM circuit so that a 
bit can never be read or written reliably, the processor might not be able to correct and recover 
from the error. The processor contains features that enable it to recover from some hard errors. 
If you are implementing the processor and require these features, contact ARM to discuss the 
features and your requirements.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-5
ID092411 Non-Confidential



Level One Memory System 
8.2.5 Error correction

When a correctable error is detected in data that has been read from a RAM, the processor has 
various ways of generating the correct data, that follow two schemes:

Correct inline 
The error code bits are used to correct the data read from the RAM, and this data 
is used. This is the simplest way of correcting the data.

Correct-and-retry 
The error code bits are used to correct the data, and this data is then written back 
to the RAM. The processor then repeats the read access by re-executing the 
instruction that caused the read, and reads the corrected data from the RAM if no 
more errors have occurred. This takes more clock cycles, at least nine, in the event 
of an error, but has the side-effect of correcting the data in the RAM so that the 
errors in the data cannot become worse.

Note
 Because RAM errors generally occur infrequently, the extra cycles required to 

perform correct-and-retry do not have a significant impact on average 
performance.

The correction method that the processor uses depends on the individual error. The processor 
uses correct inline error correction when it detects a correctable error on a TCM read made by 
the AXI-slave interface. The processor uses correct-and-retry correction when it detects a 
correctable ECC error on a TCM read made by the instruction-side or data-side.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-6
ID092411 Non-Confidential



Level One Memory System 
8.3 Fault handling
Faults can occur on instruction fetches for the following reasons:
• MPU background fault
• MPU permission fault
• External AXI slave error (SLVERR)
• External AXI decode error (DECERR)
• Cache parity or ECC error
• TCM ECC error
• TCM external error
• TCM external retry request
• Breakpoints, and vector capture events.

Faults can occur on data accesses for the following reasons:
• MPU background fault
• MPU permission fault
• MPU alignment fault
• External AXI slave error (SLVERR)
• External AXI decode error (DECERR)
• External AHB error
• Cache parity or ECC error
• TCM ECC error
• TCM external error
• TCM external retry request
• Watchpoints.

Fault handling is described in:
• Faults
• Fault status information on page 8-9
• Correctable Fault Location Register on page 8-10
• Usage models on page 8-10.

8.3.1 Faults

The classes of fault that can occur are:
• MPU faults
• External faults on page 8-8
• Cache and TCM parity and ECC errors on page 8-8
• TCM external faults on page 8-8
• Debug events on page 8-9
• Synchronous and asynchronous aborts on page 8-9.

MPU faults

The MPU can generate an abort for various reasons. See MPU faults on page 7-10 for more 
information. MPU faults are always synchronous, and take priority over other types of abort. If 
an MPU fault occurs on an access that is not in the TCM, and is to one of the peripheral ports, 
is Non-cacheable, or has generated a cache-miss, the AXI/AHB transactions for that access are 
not performed.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-7
ID092411 Non-Confidential



Level One Memory System 
External faults

A memory access performed through the AXI master interface or the AXI peripheral port can 
generate two different types of error response, a slave error (SLVERR) or decode error 
(DECERR). These are known as external errors, because they are generated by the AXI system 
outside the processor. Synchronous aborts are generated for instruction fetches, data loads, 
exclusive stores, and data stores to strongly-ordered-type memory. Non-exclusive stores to 
normal-type or device-type memory generate asynchronous aborts. 

Note
 • An AXI slave that cannot handle exclusive transactions returns OKAY in response to an 

exclusive read. This is also treated as an external error, and the processor behaves as if the 
response was SLVERR.

• Exclusive doubleword transactions to shared memory on the AXI peripheral port or 
exclusive transactions to shared memory on the AHB peripheral port are aborted. They 
are treated as synchronous external errors, and the processor behaves as if the response 
was SLVERR.

• An AHB peripheral port slave response of ERROR is treated by the processor as a 
response of SLVERR.

Cache and TCM parity and ECC errors

If the processor has been configured with the appropriate build options, it can detect data errors 
occurring in the cache and TCM RAMs using parity or ECC logic. For more information on 
cache errors, see Handling cache parity errors on page 8-21 and Handling cache ECC errors 
on page 8-22. For more information on TCM errors, see About the error detection and 
correction schemes on page 8-4. Depending on the software configuration of the processor, 
these errors are either ignored, generate an abort, are automatically corrected without generating 
an abort, or are corrected and generate an abort. If the processor is in debug-halt-state, an error 
that is otherwise automatically corrected generates an abort.

Parity and ECC errors can only occur on reads, although these reads might be a side-effect of 
store instructions. Aborts generated by loads are always synchronous. Aborts generated by store 
instructions to the TCM are also always synchronous, while those to the cache are always 
asynchronous. These errors can also occur on some cache-maintenance operations, see Errors 
on cache maintenance operations on page 8-23, and generate asynchronous aborts.

Many of the parity and ECC errors are also signaled by the generation of events. See Chapter 6 
Events and Performance Monitor. Some of these events are generated when the error is 
detected, regardless of whether or not an abort is taken. Aborts are only taken when a memory 
access with an error is committed. Others are signaled when and only when the abort is taken.

Any parity or ECC error that can be corrected by the processor is considered to be a correctable 
fault, regardless of whether or not the processor is configured to correct the fault.

TCM external faults

The TCM port includes signals that can be used to signal an error on a TCM transaction. If 
enabled, this causes the processor to take the appropriate type of abort for instruction and data 
accesses, or to generate a SLVERR response to an AXI-slave transaction. Write transactions 
always generate asynchronous aborts, while read transactions always generate synchronous 
aborts.

An error signaled on a read transaction can also signal a retry request, that requests that the 
processor retry the same operation rather than take an exception.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-8
ID092411 Non-Confidential



Level One Memory System 
A retry request from the TCM port is considered to be a recoverable error. All correctable ECC 
faults are also considered to be recoverable.

Debug events

The debug logic in the processor can be configured to generate breakpoints or vector capture 
events on instruction fetches, and watchpoints on data accesses. If the processor is 
software-configured for monitor-mode debugging, an abort is taken when one of these events 
occurs, or when a BKPT instruction is executed. For more information, see Chapter 12 Debug.

Synchronous and asynchronous aborts

See Aborts on page 3-23 for more information about the differences between synchronous and 
asynchronous aborts.

8.3.2 Fault status information

When an abort occurs, information about the cause of the fault is recorded in a number of 
registers, depending on the type of abort:
• Abort exceptions
• Synchronous abort exceptions on page 8-10
• Asynchronous abort exceptions on page 8-10.

Abort exceptions

The following registers are updated when any abort exception is taken:

Link Register  
The r14_abt register is updated to provide information about the address of the 
instruction that the exception was taken on, in a similar way to other types of 
exception. See Exceptions on page 3-17 for more information. This information 
can be used to resume program execution after the abort has been handled.

Note
 When a prefetch abort has occurred, ARM recommends that you do not use the 

link register value for determining the aborting address, because 32-bit Thumb 
instructions do not have to be word aligned and can cause an abort on either 
halfword. This applies even if all of the code in the system does not use the extra 
32-bit Thumb instructions introduced in ARMv6T2, because the earlier BL and 
BLX instructions are both 32 bits long. Use the Fault Address Register instead, as 
described in this section.

Saved Program Status Register 
The SPSR_abt register is updated to record the state and mode of the processor 
when the exception was taken, in a similar way to other types of exception. See 
Exceptions on page 3-17 for more information.

Fault Status Register 
There are two fault status registers, one for prefetch aborts (IFSR) and one for 
data aborts (DFSR). These record the type of abort that occurred, and whether it 
occurred on a read or a write. In particular, this enables the abort handler to 
distinguish between synchronous aborts, asynchronous aborts, and debug events. 
See Fault Status and Address Registers on page 4-49 for more information about 
the format of this register and the encodings used.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-9
ID092411 Non-Confidential



Level One Memory System 
Synchronous abort exceptions

The following registers are updated when a synchronous abort exception is taken:

Fault Address Register 
There are two fault address registers, one for prefetch aborts (IFAR) and one for 
data aborts (DFAR). These indicate the address of the memory access that caused 
the fault. See Fault Status and Address Registers on page 4-49.

Auxiliary Fault Status Register 
There are two auxiliary fault status registers, one for prefetch aborts (AIFSR) and 
one for data aborts (ADFSR). These record additional information about the 
nature and location of the fault, including whether it was a recoverable error or 
not, whether it occurred in the cache, AXI-master interface, AXI peripheral port, 
AHB peripheral port, ATCM or BTCM and, if appropriate, which cache way the 
error occurred in. The cache index is not recorded on a synchronous abort, 
because this information can be derived from the fault address. See Fault Status 
and Address Registers on page 4-49.

Asynchronous abort exceptions

The following register is updated when an asynchronous abort exception is taken:

Auxiliary Data Fault Status Register 
The ADFSR is updated to indicate whether or not the fault was recoverable, 
whether it occurred in the cache, AXI-master interface, AXI peripheral port, AHB 
peripheral port, ATCM or BTCM and, if appropriate, which cache set and way the 
error occurred in. Because the DFAR is not updated on asynchronous aborts, 
asynchronous aborts cannot normally be located, except when the error occurred 
in the cache.

The effect of debug events on these registers is described in Debug exception on page 12-42.

8.3.3 Correctable Fault Location Register

Correctable faults are normally automatically corrected by the processor but, depending on the 
configuration and on the access that generated the fault, an exception might not be generated, 
and the fault status registers might not be updated. In all cases, information about the location 
of the fault is recorded in the Correctable Fault Location Register (CFLR).

The CFLR also records information about ACP D-Cache lookups that cause a correctable error.

All correctable faults are recorded in the same register, regardless of whether it was an 
instruction-fetch, a data-access, an AXI-slave access, or an ACP coherency maintenance 
operation that generated the fault, and whether the fault occurred in the ATCM, BTCM or cache. 
The CFLR contains information to identify what sort of access generated the fault, and which 
device it occurred in. See Correctable Fault Location Register on page 4-77 for more 
information about the format of this register. Each time the CFLR is updated, the information 
already in the CFLR is discarded and therefore the CFLR can only contain information about 
the most recent correctable fault.

8.3.4 Usage models

This section describes some ways in which errors can be handled in a system. Exactly how you 
program the processor to handle errors depends on the configuration of your processor and 
system, and what you are trying to achieve.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-10
ID092411 Non-Confidential



Level One Memory System 
If an abort exception is taken, the abort handler reads the information in the link register, SPSR, 
and fault status registers to determine the type of abort. Some types of abort are fatal to the 
system, and others can be fixed, and program execution resumed. For example, an MPU 
background fault might indicate a stack overflow, and be rectified by allocating more stack and 
reprogramming the MPU to reflect this. Alternatively, an asynchronous external abort might 
indicate that a software error meant that a store instruction occurred to an unmapped memory 
address. Such an abort is fatal to the system or process because no information is recorded about 
the address the error occurred on, or the instruction that caused the error.

Table 8-1 shows which types of abort are typically fatal because either the location of the error 
is not recorded or the error is unrecoverable. Some aborts that are marked as not fatal might turn 
out to be fatal in some systems when the cause of the error has been determined. For example, 
an MPU background fault might indicate a stack overflow, that can be rectified, or it might 
indicate that, because of a bug, the software has accessed a nonexistent memory location, that 
can be fatal. These cases can be distinguished by determining the location where the error 
occurred. If an error is unrecoverable, that is, it is not a correctable parity or ECC error, and it 
is not a TCM external retry request, it is normally fatal regardless of whether or not the location 
of the error is recorded. When an abort is taken on an external TCM, parity, or ECC error, the 
appropriate Auxiliary Fault Status Register records whether the error was recoverable. See Fault 
Status and Address Registers on page 4-49.

Correctable errors

In a system in which the processor is configured to automatically correct ECC errors without 
taking an abort exception, you can still configure it to respond to such errors. Connect the event 
output or outputs that indicate a correctable error to an interrupt controller. When such an event 
occurs, the interrupt input to the processor is set, and the processor takes an interrupt exception. 
When your interrupt handler has identified the source of the interrupt as a correctable error, it 
can read the CFLR to determine where the ECC error occurred. You can examine this 
information to identify trends in such errors. By masking the interrupt when necessary, your 

Table 8-1 Types of aborts

Type Conditions Source Synchronous Fatal

MPU fault Access not permitted by MPUa MPU Yes No

Synchronous External Load using L2 memory interface AXI, AHB Yes No

Asynchronous External Store to Normal or Device memory using L2 
memory interface

AXI, AHB No Yes

Synchronous Parity/ECC Cache Load from cacheb Cache Yes Maybec

Synchronous ECC TCM Load/store from/to TCMd TCM Yes Maybec

Synchronous TCM external error Load/store from/to TCMe TCM Yes Yes

Asynchronous Parity/ECC Cache Store to cache or cache maintenance operationb Cache No Maybec

Asynchronous TCM external error Store to TCMe TCM No Yes

a. See MPU faults on page 7-10 for more information about the types of MPU fault.
b. See Cache error detection and correction on page 8-20 for more information about parity/ECC errors from the cache.
c. These types of error can be correctable or uncorrectable. Uncorrectable errors are typically fatal. Correctable errors are automatically 

corrected by the hardware and might not cause the abort handler to be called. See Cache error detection and correction on page 8-20 and 
TCM internal error detection and correction on page 8-14.

d. See TCM internal error detection and correction on page 8-14 for more information about ECC errors from the TCM.
e. Aborts generated by external TCM errors are always unrecoverable, and therefore fatal, see External TCM errors on page 8-16 for more 

information about external errors from the TCM.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-11
ID092411 Non-Confidential



Level One Memory System 
software can ensure that when critical code is executing, the processor corrects the error 
automatically, but delays examining information about the error until after the critical code has 
completed.

When the processor is in debug halt-state, any correctable error is corrected as appropriate, but 
the memory access is not repeated to fetch the correct data, therefore the instruction generating 
the error does not complete successfully. Instead, the sticky synchronous abort flag in the 
DBGDSCR is set. See CP14 c1, Debug Status and Control Register on page 12-14.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-12
ID092411 Non-Confidential



Level One Memory System 
8.4 About the TCMs
The processor has two TCM interfaces to support the connection of local memories. The ATCM 
interface has one TCM port. The BTCM interface can support one or two TCM ports. Each 
TCM port is a physical connection on the processor that is suitable for connection to SRAM 
with minimal glue logic. These ports are optimized for low latency memory.

The TCM ports are designed to be connected to RAM, or RAM-like memory, that is, 
Normal-type memory. The processor can issue speculative read accesses on these interfaces, 
and interrupt store instructions that have issued some but not all of their write accesses. 
Therefore, both read and write accesses through the TCM interfaces can be repeated. This 
means that the TCM ports are generally not suitable for read- or write-sensitive devices such as 
FIFOs. ROM can be connected to the TCM ports, but normally only if ECC is not used. See 
Hard errors on page 8-5. If the access is speculative, the processor ignores any error or retry 
signaled on the TCM port.

The TCM ports also have wait and error signals to support slow memories and external error 
detection and correction. For more information, see External TCM errors on page 8-16.

The PFU can read data using the TCM interfaces. The LSU and AXI slave can each read and 
write data using the TCM interfaces.

Each TCM interface has a dedicated base address that you can place anywhere in the physical 
address map, and must not be backed by memory implemented externally. The ATCM and 
BTCM interfaces must have separate base addresses and must not overlap. 

This section describes:
• TCM attributes and permissions
• ATCM and BTCM configuration on page 8-14
• TCM internal error detection and correction on page 8-14
• TCM arbitration on page 8-15
• TCM initialization on page 8-15
• TCM port protocol on page 8-16
• External TCM errors on page 8-16
• AXI slave interfaces for TCMs on page 8-17.

8.4.1 TCM attributes and permissions

Accesses to the TCMs from the LSU and PFU are checked against the MPU for access 
permission. Memory access attributes and permissions are not exported on this interface. Reads 
that generate an MPU fault are broadcast on the TCM interface but the abort is taken before the 
data is used, ensuring protection is maintained.

TCMs always behave as Non-cacheable Non-shared Normal memory, irrespective of the 
memory type attributes defined in the MPU for a memory region containing addresses held in 
the TCM. Access permissions for TCM accesses are the same as the permission attributes that 
the MPU assigns to the same address. See Chapter 7 Memory Protection Unit for more 
information about memory attributes, types, and permissions.

Note
 Any address in an MPU region with device or strongly-ordered memory type attributes is 
implicitly given execute-never (XN) permissions. If such an address is also in a TCM region, 
XN permissions are applied to TCM accesses to that address. None of the other device or 
strongly-ordered behaviors apply to an address in a TCM region.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-13
ID092411 Non-Confidential



Level One Memory System 
8.4.2 ATCM and BTCM configuration

The TCM interfaces are configured during implementation and integration.

You can configure the ATCM interface to be removed, and not included in the processor design. 
If implemented, the ATCM can have only a single port.

You can configure the BTCM interface to:
• be removed, and not included in the processor design
• have a single BTCM port
• have two banked BTCM ports, interleaved on either:

— Bit [3] of the address
— The most significant bit of the BTCM interface address. This depends on the size of 

the BTCM.

During implementation, you can configure the ATCM and/or the BTCM to use an 
error-protection scheme to protect the data stored in the TCM, see TCM internal error detection 
and correction.

The size of each TCM interface is configured during integration. The permissible TCM sizes 
are:
• 0KB
• 4KB
• 8KB
• 16KB
• 32KB
• 64KB
• 128KB
• 256KB
• 512KB
• 1MB
• 2MB
• 4MB
• 8MB.

If the BTCM interface has two ports, the size of the RAM attached to each port is half the total 
size for the BTCM interface.

The size of the TCM interfaces is visible to software in the TCM Region Registers, see c9, 
BTCM Region Register on page 4-63 and c9, ATCM Region Register on page 4-64. All TCM 
interface build configuration options can be read from the Build Options Registers, see c15, 
Build Options 1 Register on page 4-79 and c15, Build Options 2 Register on page 4-80.

8.4.3 TCM internal error detection and correction

Each TCM interface can be configured with either 32-bit ECC, or 64-bit ECC error schemes. 
Both the BTCM ports must have the same error scheme. This section describes these error 
schemes.

If a TCM interface has been built with either 32-bit or 64-bit ECC error checking, you can 
enable this by setting the appropriate bits in the Auxiliary Control Register. See c1, Auxiliary 
Control Register on page 4-41. On the BTCM interface, ECC checking can only be enabled for 
both ports or neither port. You can pin-configure the processor to set the enable bits and 
therefore enable ECC checking on reset, by tying off the PARECCENRAMm input as 
required.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-14
ID092411 Non-Confidential



Level One Memory System 
When a fatal error, that is, a 2-bit ECC error, is detected on a TCM read, an error is generated. 
Instruction and data reads generate the appropriate type of synchronous abort, and the 
AXI-slave interface returns a SLVERR response to the AXI system.

When a correctable error, that is, a 1-bit ECC error, is detected on a TCM read made by the 
AXI-slave interface, the processor corrects the data inline before returning to the system.

When a correctable ECC error is detected on a TCM read made by the instruction-side or 
data-side, the processor normally generates the correct data and writes it back to the TCM. In 
the meantime, the processor retries the read to fetch the correct instruction or data. By setting 
the appropriate bits in the Secondary Auxiliary Control Register, you can disable this behavior. 
See c15, Secondary Auxiliary Control Register on page 4-44. Instead of correcting the error in 
the TCM, the processor generates the appropriate type of synchronous abort.

All ECC code generation and ECC checking must be performed on a complete data chunk, 
either 32-bits or 64-bits depending on the configuration. If a read access smaller than the data 
chunk is required, the whole chunk is read. If a write smaller than the data chunk is required, the 
processor must perform read-modify-write to generate the correct data and ECC code, but it 
only does this when ECC error checking is enabled. The data read as part of the 
read-modify-write sequence is checked for ECC errors, and the errors are handled in the same 
way as for any other TCM read. The ECC code is generated and written to the TCM for every 
write, regardless of whether error checking is enabled or not, but the code is only correct if the 
write was of a complete data chunk or if the processor performed read-modify-write to generate 
the complete data chunk. All data and instruction aborts generated by the ECC logic are 
indicated in the appropriate FSR as being a synchronous parity error.

8.4.4 TCM arbitration

Each TCM port receives requests from the LSU, PFU, and AXI slave. In most cases, the LSU 
has the highest priority, followed by the PFU, with the AXI slave having lowest priority. 

When a higher-priority device is accessing a TCM port, an access from a lower-priority device 
must stall.

When either the LSU or the AXI slave interface is performing a read-modify-write operation on 
a TCM port, various internal data hazards exist for either the AXI-slave interface or the LSU. 
In these cases, additional stall cycles are generated, beyond those normally required for 
arbitration. For optimum performance of the processor when configured with ECC, ensure that 
all write bursts to the TCM from the AXI slave interface write an entire data chunk, that is, 
32-bits or 64-bits, naturally aligned, depending on the error scheme.

8.4.5 TCM initialization

You can enable the processor to boot from the ATCM or the BTCM. The INITRAMAm and 
INITRAMBm pins, when tied HIGH, enable the ATCM and the BTCM respectively on leaving 
reset. The LOCZRAMAm pin forces one of the TCMs to have its base address at 0x0. If 
LOCZRAMAm is tied HIGH, the initial base address of the ATCM is 0x0, otherwise the initial 
base address of the BTCM is 0x0. In both cases, the initial base address of the other TCM is 
implementation-defined, see Configurable options on page 1-6. 

The ATCM Region Register and BTCM Region Register respectively determine the base 
address for the ATCM and BTCM. For information on how to read the TCM region registers, 
see c9, BTCM Region Register on page 4-63 or c9, ATCM Region Register on page 4-64 as 
appropriate. For information about pre-loading data into the TCMs, see TCM on page 2-19.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-15
ID092411 Non-Confidential



Level One Memory System 
8.4.6 TCM port protocol

Each TCM port operates independently to read and write data to and from the memory attached 
to it. Information about which memory location is to be accessed is passed on the TCM port 
along with write data and associated error code, if appropriate. In addition, the TCM port 
provides information about whether the access results from an instruction fetch from the PFU, 
a data access from the LSU, or a DMA transfer from the AXI slave interface. Each TCM port 
can also be configured to have an associated parity bit, computed from the address and control 
signals for that port.

Read data and associated error code or parity bits are read back from the TCM port. In addition, 
the TCM memory controller can indicate that the processor must wait one or more cycles before 
reading the response, or signal that an error has occurred and must be either aborted or retried. 
For more information about TCM errors, see External TCM errors.

8.4.7  External TCM errors

Each TCM port has a number of features that support the integration of a TCM RAM with an 
error checking scheme implemented in the RAM controller logic outside of the processor, that 
is, by the integrator.

Errors can be signaled to each TCM port if the external error checking scheme detects one and, 
if enabled, the processor generates an instruction or data abort or an AXI error response as 
appropriate. On a TCM read from either the instruction-side or data-side, the TCM controller 
can indicate that the read must be retried instead of generating an abort. 

You can enable external errors for each TCM port individually by setting the appropriate bits in 
the Auxiliary Control Register. See c1, Auxiliary Control Register on page 4-41. If external 
errors are not enabled for a TCM port, the processor ignores any error signaled on that port. You 
can pin-configure the processor to set the enable bits, and therefore enable external error 
checking on reset, by tying off the ERRENRAMm input as required.

In addition, an external error detection scheme might require that data is read and written in 
particular sized chunks. The load/store-64 feature, when enabled for a particular TCM interface, 
causes all loads and stores to the TCM ports to be of 64-bits of data. This feature is also known 
as Read-Modify-Write (RMW), because it causes the processor to generate read-modify-write 
sequences for any store of less than 64-bits. You can enable RMW behavior for each TCM 
interface individually by setting the appropriate bits in the Secondary Auxiliary Control 
Register. See c1, Auxiliary Control Register on page 4-41. You can pin-configure the processor 
to set the enable bits and therefore RMW behavior on reset, by tying off the RMWENRAMm 
input as required.

Note
 The load/store-64 feature is not available on any TCM interface that has been configured with 
32-bit ECC.

The error inputs on each TCM port can also be used to signal other types of error, for example, 
when an address accessed is out of range for the RAM attached to the TCM port. Errors signaled 
on writes from the data-side generate an asynchronous abort. All other aborts generated by 
external errors are synchronous. The type of abort is shown in the appropriate FSR as either 
synchronous or asynchronous parity error.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-16
ID092411 Non-Confidential



Level One Memory System 
8.4.8 AXI slave interfaces for TCMs

The processor has a 64-bit AXI slave interface that provides access to the TCM interfaces from 
the AXI bus. This interface is included by default, but can be excluded during configuration of 
the processor.

You can use the slave interface for access to the TCM memories. This also enables you to 
construct a system with a consistent view of memory. That is, the TCMs can be available at the 
same address to the processor and to the system bus.

The AXI slave interface accesses have lower priority than the LSU or PFU accesses. 

The MPU does not check accesses from the AXI slave. You can configure the processor to 
enable privileged or nonprivileged access to the TCM interfaces from the AXI slave port.

The AXI slave interface does not support locked and exclusive accesses. This means that AXI 
masters, other than the processor, cannot safely use semaphores in the TCMs. Although the 
Cortex-R5 processor can use semaphores in the TCMs for inter-process synchronization, you 
must not use the AXI-slave interface to write to TCM semaphores. The processor has no logic 
to preserve its own exclusivity against such writes.

For more information on the AXI slave interface, see AXI slave interface on page 9-21.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-17
ID092411 Non-Confidential



Level One Memory System 
8.5 About the caches
The L1 memory system can be configured to include instruction and data caches of varying 
sizes. You can configure whether each cache controller is included and, if it is, configure the size 
of each cache independently. The cached instructions or data are fetched from external memory 
using the AXI-master L2 memory interface. The cache controllers use RAMs that are integrated 
into the Cortex-R5 processor during implementation.

Any access that is not for a TCM or peripheral port is handled by the appropriate cache 
controller. If the access is to non-shared Cacheable memory, and the cache is enabled, a lookup 
is performed in the cache and, if found in the cache, that is, a cache hit, the data is fetched from 
or written into the cache. When the cache is not enabled and for Non-cacheable or shared 
memory, the accesses are performed using the AXI-master interface.

Both caches allocate a memory location to a cache line on a cache miss because of a read, that 
is, all Cacheable locations are Read-Allocate (RA). In addition, the data cache can allocate on a 
write access if the memory location is marked as Write-Allocate (WA). When a cache line is 
allocated, the appropriate memory is fetched into a linefill buffer by the AXI-master interface 
before being written to the cache. See Linefill buffers and the AXI master interface on page 9-6. 
The linefill buffers always fetch the requested data first, return it, and then fetch the rest of the 
cache line. This enables the data read to be used by the pipeline without waiting for the linefill 
to complete and is known as critical word first and non-blocking behavior. If subsequent 
instructions require data from the same cache line, this can also be returned when it has been 
fetched without waiting for the linefill to complete, that is, the caches also support streaming. If 
an error is reported to the AXI-master interface for a linefill, the linefill does not update the 
cache RAMs, but an abort is only generated if the error was reported on the critical word.

If all the cache lines in a set are valid, to allocate a different address to the cache, the cache 
controller must evict a line from the cache.

Writes accesses that hit in the cache are written into the cache RAMs. If the memory location is 
marked as Write-Through (WT), the write is also performed on the AXI-master interface, so that 
the data stored in the RAM remains coherent with the external memory system. If the memory 
is Write-Back (WB), the cache line is marked as dirty, and the write is only performed on the 
AXI-master interface when the line is evicted. When a dirty cache line is evicted, the data is 
passed to the Eviction Buffer in the AXI-master interface to be written to the external memory 
system. See Eviction buffer on page 9-7 for more information.

The cache controllers also manage the cache maintenance operations described in Cache 
maintenance operations on page 8-19.

Each cache can also be configured with either parity or ECC error checking schemes. If an error 
checking scheme is implemented and enabled, then the tags associated with each line, and data 
read from the cache are checked whenever a lookup is performed in the cache. See Cache error 
detection and correction on page 8-20 for more information.

For more information on the general rules about memory attributes and behavior, see the ARM 
Architecture Reference Manual.

8.5.1 Store buffer

The cache controller includes a store buffer to hold data before it is written to the cache RAMs 
or passed to the AXI master interface. The store buffer has four entries. Each entry can contain 
up to 64 bits of data and a 32-bit address. All write requests from the data-side that are not to a 
TCM or peripheral interface are stored in the store buffer.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-18
ID092411 Non-Confidential



Level One Memory System 
Store buffer merging

The store buffer has merging capabilities. If a previous write access has updated an entry, other 
write accesses on the same line can merge into this entry. Merging is only possible for stores to 
Normal memory. 

Merging is possible between several entries that can be linked together if the data inside the 
different entries belong to the same cache line.

No merging occurs for writes to Strongly Ordered or Device memory. The processor 
automatically drains the store buffer as necessary before performing Strongly Ordered accesses 
or Device reads.

Store buffer behavior

The store buffer directs write requests to the following blocks:

• Cache controller for Cacheable write hits:
The store buffer sends a cache lookup to check that the cache hits in the specified line, and 
if so, the store buffer merges its data into the cache when the entry is drained.

• AXI master interface:
— For Non-cacheable stores or write-through Cacheable stores, a write access is 

performed on the AXI master interface.
— For write-back, write-allocate stores that miss in the data cache, a linefill is started 

using either of the two linefill buffers. When the linefill data is returned from the L2 
memory system, the data in the store buffer is merged into the linefill buffer to be 
subsequently written into the cache.

Store buffer draining

A store buffer entry is drained if:
• All bytes in the entry have been written. This might result from merging.
• The entry can be merged into a linefill buffer.
• The entry contains a store to Device or Strongly Ordered memory.
• The entry has been waiting for merge data for too long.

The store buffer is completely drained when:
• An explicit drain request is done for:

— system control coprocessor cache maintenance operations
— a DMB or DSB instruction
— a load or store to Strongly Ordered memory
— an exclusive load or store to Shared memory
— a SWP or SWPB to Non-cacheable memory.

• The store buffer is full or likely to become full.

The store buffer is drained of all stores to Device memory before a load is performed from 
Device memory.

8.5.2 Cache maintenance operations

All cache maintenance operations are done through the system control coprocessor, CP15. The 
system control coprocessor operations supported for the data cache are:
• Invalidate all
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-19
ID092411 Non-Confidential



Level One Memory System 
• Invalidate by address (MVA)
• Invalidate by Set/Way combination
• Clean by address (MVA)
• Clean by Set/Way combination
• Clean and Invalidate by address (MVA)
• Clean and Invalidate by Set/Way combination
• Data Memory Barrier (DMB) and Data Synchronization Barrier (DSB) operations. 

The system control coprocessor operations supported for the instruction cache are:
• Invalidate all
• Invalidate by address.

For more information on cache operations, see Cache operations on page 4-60.

8.5.3 Cache error detection and correction

This section describes how the processor detects, handles, reports, and corrects cache memory 
errors. Memory errors detected with parity or ECC have Fault Status Register (FSR) values to 
distinguish them from other abort causes.

This section describes:
• Error build options
• Address decoder faults on page 8-21
• Handling cache parity errors on page 8-21
• Handling cache ECC errors on page 8-22
• Errors on instruction cache read on page 8-23
• Errors on data cache read on page 8-23
• Errors on data cache write on page 8-23
• Errors on evictions on page 8-23
• Errors on cache maintenance operations on page 8-23.

Error build options

The caches can detect and correct errors depending on the build options used in the 
implementation. The build options for the instruction cache can be different to the data cache.

If the parity build option is enabled, the cache is protected by parity bits. For both the instruction 
and data cache, the data RAMs include one parity bit per byte of data. The tag RAM contains 
one parity bit to cover the tag and valid bit.

If the ECC build option is enabled:

• The instruction cache is protected by a 64-bit ECC scheme. The data RAMs include eight 
bits of ECC code for every 64 bits of data. The tag RAMs include seven bits of ECC code 
to cover the tag and valid bit.

• The data cache is protected by a 32-bit ECC scheme. The data RAMs include seven bits 
of ECC code for every 32 bits of data. The tag RAMs include seven bits of ECC code to 
cover the tag and valid bit. The dirty RAM includes four bits of ECC to cover the dirty bit 
and the two outer attributes bits of each cache line.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-20
ID092411 Non-Confidential



Level One Memory System 
Address decoder faults

The error detection schemes described in this section provide protection against errors that 
occur in the data stored in the cache RAMs. Each RAM normally includes a decoder that enables 
access to that data and, if an error occurs in this logic, it is not normally detected by these error 
detection schemes. The processor includes features that enable it to detect some address decoder 
faults. If you are implementing the processor and require these features, contact ARM to discuss 
the features and your requirements.

Handling cache parity errors

Table 8-2 shows the behavior of the processor on a cache parity error, depending on bits [5:3] 
of the Auxiliary Control Register, see c1, Auxiliary Control Register on page 4-41. 

See Disabling or enabling error checking on page 8-32 for information on how to safely change 
these bits.

Hardware recovery

When parity checking is enabled, hardware recovery is always enabled. Memory marked as 
write-back write-allocate behaves as write-though. This ensures that cache lines can never be 
dirty, therefore the error can always be recovered from by invalidating the cache line that 
contains the parity error. The processor automatically performs this invalidation when an error 
is detected. The correct data can then be re-read from the L2 memory system.

Parity aborts

If aborts on parity errors are enabled, software is notified of the error by a data abort or prefetch 
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery including the access retry is invisible 
to software. If required, software can use events and the Correctable Fault Location Register to 
monitor the errors that are detected and corrected. See Error detection events on page 8-36 and 
Correctable Fault Location Register on page 4-77.

Parity errors, caused by ACP coherency maintenance operations, never generate aborts.

Table 8-2 Cache parity error behavior

Value Behavior

b000 Generate abort on parity errorsa, force write-through, enable hardware recovery

a. Parity errors caused by ACP coherency maintenance operations do not generate aborts

b001

b010

b011 Reserved

b100 Disable parity checking

b101 Do not generate abort on parity errors, force write-through, enable hardware recovery

b110

b111 Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-21
ID092411 Non-Confidential



Level One Memory System 
Handling cache ECC errors

Table 8-3 shows the behavior of the processor on a cache ECC error, depending on bits [5:3] of 
the Auxiliary Control Register, see c1, Auxiliary Control Register on page 4-41.

See Disabling or enabling error checking on page 8-32 for information on how to safely change 
these bits.

When ECC checking is enabled, hardware recovery is always enabled. When an ECC error is 
detected, the processor tries to evict the cache line containing the error. If the line is clean, it is 
invalidated, and the correct data is reloaded from the L2 memory system. If the line is dirty, the 
eviction writes the dirty data out to the L2 memory system, and in the process it corrects any 
1-bit errors. The corrected data is then reloaded from the L2 memory system.

If a 2-bit error is detected in a dirty line, the error is not correctable. If the 2-bit error is in the 
tag or dirty RAM, no data is written to the L2 memory system. If the 2-bit error is in the data 
RAM, the cache line is written to the L2 memory system, but the AXI master port WSTRBMm 
signal is LOW for the data that contains the error. If an uncorrectable error is detected, an abort 
is always generated because data might have been lost. It is expected that such a situation can 
be fatal to the software process running.

If one of the force write-though settings is enabled, memory marked as write-back write-allocate 
behaves as write-though. This ensures that cache lines can never be dirty, therefore the error can 
always be recovered from by invalidating the cache line that contains the ECC error.

You can recover from all detectable errors in the instruction cache, because the instruction cache 
can never contain dirty data.

ECC aborts

If aborts on ECC errors are enabled, software is notified of the error by a data abort or prefetch 
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery including the access retry of 
correctable errors is invisible to software. If required, software can use events and the 
Correctable Fault Location Register to monitor the errors that are detected and corrected. See 
Error detection events on page 8-36 and Correctable Fault Location Register on page 4-77.

ECC errors, caused by ACP coherency maintenance operations, never generate aborts.

Table 8-3 Cache ECC error behavior

Value Behavior

b000 Generate abort on ECC errorsa, enable hardware recovery

a. ECC errors caused by ACP coherency maintenance operations do not generate aborts

b001

b010 Generate abort on ECC errorsa, force write-through, enable hardware recovery

b011 Reserved

b100 Disable ECC checking

b101 Do not generate abort on ECC errors, enable hardware recovery

b110 Do not generate abort on ECC errors, force write-through, enable hardware recovery

b111 Reserved
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-22
ID092411 Non-Confidential



Level One Memory System 
Errors on instruction cache read

All parity or ECC errors detected on instruction cache reads are correctable. If aborts are 
enabled, a synchronous prefetch abort exception occurs. The instruction FAR gives the address 
that caused the error to be detected. The instruction FSR indicates a parity error on a read. The 
auxiliary FSR indicates that the error was in the cache and which cache Way the error was in.

Errors on data cache read

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, a synchronous 
data abort exception occurs. The data FAR gives the address that caused the error to be detected. 
The data FSR indicates a synchronous read parity error. The auxiliary FSR indicates that the 
error was in the cache and which cache Way the error was in.

Errors on data cache write

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, an asynchronous 
data abort exception occurs. Because the abort is asynchronous, the data FAR is Unpredictable. 
The data FSR indicates an asynchronous write parity error. The auxiliary FSR indicates that the 
error was in the cache and which cache Way and Index the error was in.

In write-through cache regions the store that caused the error is written to external memory 
using the L2 memory interface so data is not lost and the error is not fatal. 

Errors on evictions

If the cache controller has determined a cache miss has occurred, it might have to do an eviction 
before a linefill can take place. This can occur on reads, and on writes if write-allocation is 
enabled for the region. Certain cache maintenance operations also generate evictions. If it is a 
data-cache line that is dirty, an ECC error might be detected on the line being evicted:

• if the error is correctable, it is corrected inline before the data is written to the external 
memory using the L2 memory interface

• if there is an uncorrectable error in the tag or dirty RAM, the write is not done and an 
asynchronous abort occurs

• if there is an uncorrectable error in the data RAM, the AXI master port WSTRBMm 
signal is deasserted for the words with an error, and an asynchronous abort occurs.

An asynchronous abort can also occur on a correctable error depending on the Auxiliary Control 
Register bits [5:3], see c1, Auxiliary Control Register on page 4-41. Any detected error is 
signaled with the appropriate event.

Note
 When parity checking is enabled, force write-though is always enabled. Therefore the cache 
lines can never be dirty, and so evictions are not required. Force write-through can also be 
enabled with ECC checking.

Errors on cache maintenance operations

The following sections describe errors on cache maintenance operations:
• Invalidate all instruction cache on page 8-24
• Invalidate all data cache on page 8-24
• Invalidate instruction cache by address on page 8-24
• Invalidate data cache by address on page 8-24
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-23
ID092411 Non-Confidential



Level One Memory System 
• Invalidate data cache by set/way
• Clean data cache by address
• Clean data cache by set/way on page 8-25
• Clean and invalidate data cache by address on page 8-25
• Clean and invalidate data cache by set/way on page 8-25.

Invalidate all instruction cache

This operation ignores all errors in the cache and sets all instruction cache entries to invalid 
regardless of error events. This operation cannot generate an asynchronous abort, and no error 
events are signaled.

Invalidate all data cache

This operation ignores all errors in the cache and sets all data cache entries to invalid regardless 
of errors. This operation cannot generate an asynchronous abort and no error events are 
signaled.

Invalidate instruction cache by address

This operation requires a cache lookup. Any errors found in the set that was looked up are fixed 
by invalidating that line and, if the address in question is found in the set, it is invalidated.

This operation cannot generate an asynchronous abort. Any detected error is signaled with the 
appropriate event.

Invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, it is invalidated.

Any uncorrectable errors cause an asynchronous abort. An asynchronous abort can also be 
raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control 
Register.

Any detected error is signaled with the appropriate event.

Invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The entry at the given set/way is marked as invalid regardless of any errors. This operation 
cannot generate an asynchronous abort. Any detected error is signaled with the appropriate 
event.

Clean data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, the instruction carries on with the 
clean operation. When the tag lookup is done, the dirty RAM is checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-24
ID092411 Non-Confidential



Level One Memory System 
Any uncorrectable errors cause an asynchronous abort. An asynchronous abort can also be 
raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control 
Register.

Any detected error is signaled with the appropriate event.

Clean data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also 
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control 
Register.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, the instruction carries on with the 
clean and invalidate operation. When the tag lookup is done, the dirty RAM is checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also 
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control 
Register.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-25
ID092411 Non-Confidential



Level One Memory System 
If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also 
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control 
Register.

Any detected error is signaled with the appropriate event.

Errors on ACP coherency maintenance operations

Coherency maintenance operations are issued to the data cache controller when the ACP 
processes coherent write transactions. See Accelerator Coherency Port interface on page 9-53 
for more information on the ACP.

These operations require data cache lookups. Any correctable errors found in the set that was 
looked up are fixed and, if the address is found in the set and not marked as dirty, it is 
invalidated.

Any detected error is signaled with the appropriate event.

8.5.4 Cache RAM organization

This section describes RAM organization in the following sections:
• Tag RAM
• Dirty RAM on page 8-27
• Data RAM on page 8-28.

Tag RAM

The tag RAMs consist of four ways of up to 512 lines. The width of the RAM depends on the 
build options selected, and the size of the cache. The following tables show the tag RAM bits:
• Table 8-4 shows the tag RAM bits when parity is implemented
• Table 8-5 shows the tag RAM bits when ECC is implemented
• Table 8-6 on page 8-27 shows the tag RAM bits when neither parity nor ECC is 

implemented.

Table 8-4 Tag RAM bit descriptions, with parity

Bit in the tag cache line Description

Bit [23] Parity bit

Bit [22] Valid bit

Bits [21:0] Tag value

Table 8-5 Tag RAM bit descriptions, with ECC

Bit in the tag cache line Description

Bits [29:23] ECC code bits

Bit [22] Valid bit

Bits [21:0] Tag value
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-26
ID092411 Non-Confidential



Level One Memory System 
A cache line is marked as valid by bit [22] of the tag RAM. Each valid bit is associated with a 
whole cache line, so evictions always occur on the entire line.

Table 8-7 shows the tag RAM cache sizes and associated RAM organization, assuming no parity 
or ECC. For parity, the width of the tag RAMs must be increased by one bit. For ECC, the width 
of the tag RAMs must be increased by seven bits.

Dirty RAM

For the data cache only, the dirty RAM stores the following information:
• two bits for line outer attributes for evictions 
• one line dirty bit
• four ECC code bits if the ECC build option is selected.

The dirty RAM array consists of one bank of up to 512 12-bit lines, 4 ways x 3 bits. If ECC is 
enabled, the dirty RAM is 28 bits wide. Each line of dirty RAM contains all the information of 
the four ways for a given index. 

Each time a dirty bit is written, the outer bits of the line and, if implemented, the ECC code bits, 
are also written. The dirty RAM is bit-enabled. Table 8-8 shows the organization of a dirty RAM 
line.

Table 8-6 Tag RAM bit descriptions, no parity or ECC

Bit in the tag cache line Description

Bit [22] Valid bit

Bits [21:0] Tag value

Table 8-7 Cache sizes and tag RAM organization

Cache size Tag RAM organization

4KB 4 banks 23 bits 32 lines

8KB 4 banks 22 bits 64 lines

16KB 4 banks 21 bits 128 lines

32KB 4 banks 20 bits 256 lines

64KB 4 banks 19 bits 512 lines

Table 8-8 Organization of a dirty RAM line

Bit in the dirty cache line Description

Bits [6:3] ECC bits, if implemented

Bits [2:1] Outer attributes that are re-encoded on AWCACHEMm when an eviction is sent to the AXI bus:
01 = WB, WA
10 = WT
11 = WB, no WA
00 = Non-cacheable.

Bit [0] Dirty bit
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-27
ID092411 Non-Confidential



Level One Memory System 
Data RAM

Data RAM is organized as eight banks of 32-bit wide lines, or in the instruction cache as four 
banks of 64-bit wide lines. This RAM organization means that it is possible to:

• Perform a cache look-up with one RAM access, all banks selected together. This is done 
for nonsequential read operations. Figure 8-3 shows this.

• Select the appropriate bank RAM for sequential read operations. Figure 8-4 shows this.

• Write a line to the eviction buffer in one cycle, a 256-bit read access.

• Fill a line in one cycle from the linefill buffer, a 256-bit write access.

Figure 8-3 shows a cache look-up being performed on all banks with one RAM access.

Figure 8-3 Nonsequential read operation performed with one RAM access.

Figure 8-4 shows the appropriate bank RAM being selected for a sequential read operation.

Figure 8-4 Sequential read operation performed with one RAM access

The data RAM organization is optimized for 64-bit read operations, because with the same 
address, two words on the same way can be selected.

Data RAM sizes depend on the build option selected, and are described in:
• Data RAM sizes without parity or ECC implemented on page 8-29
• Data RAM sizes with parity implemented on page 8-29
• Data RAM sizes with ECC implemented on page 8-30.

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0 
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1 
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2 
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3 
Word 1

Bank 7Bank 6

Way 0
Word 6

256-bit wide

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0 
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1 
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2 
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3 
Word 1

Bank 7Bank 6

Way 0
Word 6
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-28
ID092411 Non-Confidential



Level One Memory System 
Data RAM sizes without parity or ECC implemented

Table 8-9 shows the organization for instruction and data caches when neither parity nor ECC 
is implemented.

Data RAM sizes with parity implemented

Table 8-11 shows the organization for instruction and data caches when parity is implemented. 
For parity error detection, one bit is added per byte, so four bits are added for each RAM bank.

Table 8-9 Instruction cache data RAM sizes, no parity or ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 64 bits 128 lines or 
8 banks 32 bits 128 lines

8KB, 4 2KB ways 4 banks 64 bits 256 lines or
8 banks 32 bits 256 lines

16KB, 4 4KB ways 4 banks 64 bits 512 lines or
8 banks 32 bits 512 lines

32KB, 4 8KB ways 4 banks 64 bits 1024 lines or
8 banks 32 bits 1024 lines

64KB, 4 16KB ways 4 banks 64 bits 2048 lines or
8 banks 32 bits 2048 lines

Table 8-10 Data cache data RAM sizes, no parity or ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 32 bits 128 lines

8KB, 4 2KB ways 8 banks 32 bits 256 lines

16KB, 4 4KB ways 8 banks 32 bits 512 lines

32KB, 4 8KB ways 8 banks 32 bits 1024 lines

64KB, 4 16KB ways 8 banks 32 bits 2048 lines

Table 8-11 Instruction cache data RAM sizes, with parity

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways 4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways 4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways 4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways 4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-29
ID092411 Non-Confidential



Level One Memory System 
Table 8-13 shows the organization of the data cache RAM bits when parity is implemented.

Parity bits are grouped together in bits[35:32] so that data and parity bits are easily 
differentiated. With this design the parity bit is selected alongside the related data byte, so that 
when data is updated, the parity bit is also updated.

Data RAM sizes with ECC implemented

Table 8-14 shows the organization for the instruction cache when ECC is implemented. For 
ECC error detection, eight bits are added per 64 bits, so four bits are added for each RAM bank.

Table 8-12 Data cache data RAM sizes, with parity

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 36 bits 128 lines

8KB, 4 2KB ways 8 banks 36 bits 256 lines

16KB, 4 4KB ways 8 banks 36 bits 512 lines

32KB, 4 8KB ways 8 banks 36 bits 1024 lines

64KB, 4 16KB ways 8 banks 36 bits 2048 lines

Table 8-13 Data cache RAM bits, with parity

RAM bits Description

Bit [35] Parity bit for byte[31:24]

Bit [34] Parity bit for byte[23:16]

Bit [33] Parity bit for byte[15:8]

Bit [32] Parity bit for byte[7:0]

Bits [31:0] Data[31:0]

Table 8-14 Instruction cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways 4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways 4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways 4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways 4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-30
ID092411 Non-Confidential



Level One Memory System 
Table 8-15 shows the organization for the data cache when ECC is implemented. For ECC error 
detection, seven bits are added per 32 bits, so seven bits are added for each RAM bank.

Table 8-16 shows the organization of the data cache RAM bits when ECC is implemented.

8.5.5 Cache interaction with memory system

This section describes how to enable or disable the cache RAMs, and to enable or disable error 
checking. After you enable or disable the instruction cache, you must issue an ISB instruction to 
flush the pipeline. This ensures that all subsequent instruction fetches see the effect of enabling 
or disabling the instruction cache.

After reset, you must invalidate each cache before enabling it.

When disabling the data cache, you must clean the entire cache to ensure that any dirty data is 
flushed to L2 memory.

Before enabling the data cache, you must invalidate the entire data cache if L2 memory might 
have changed since the cache was disabled.

Before enabling the instruction cache, you must invalidate the entire instruction cache if L2 
memory might have changed since the cache was disabled.

See Enabling or disabling AXI slave accesses on page 9-24 and Accessing RAMs using the AXI 
slave interface on page 9-25 for information about how to access the cache RAMs using the 
AXI slave interface.

Disabling or enabling all of the caches

The following code is an example of enabling caches:

MRC p15, 0, r1, c1, c0, 0  ; Read System Control Register configuration data
ORR r1, r1, #0x1 <<12      ; instruction cache enable
ORR r1, r1, #0x1 <<2       ; data cache enable
DSB 
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, r0, c7, c5, 0  ; Invalidate entire instruction cache
MCR p15, 0, r1, c1, c0, 0  ; enabled cache RAMs
ISB

Table 8-15 Data cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 39 bits 128 lines

8KB, 4 2KB ways 8 banks 39 bits 256 lines

16KB, 4 4KB ways 8 banks 39 bits 512 lines

32KB, 4 8KB ways 8 banks 39 bits 1024 lines

64KB, 4 16KB ways 8 banks 39 bits 2048 lines

Table 8-16 Data cache RAM bits, with ECC

RAM bits Description

Bits [39:32] ECC code bits for data [31:0]

Bits [31:0] Data [31:0]
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-31
ID092411 Non-Confidential



Level One Memory System 
The following code is an example of disabling the caches:

MRC p15, 0, r1, c1, c0, 0  ; Read System Control Register configuration data
BIC r1, r1, #0x1 <<12      ; instruction cache disable
BIC r1, r1, #0x1 <<2       ; data cache disable
DSB
MCR p15, 0, r1, c1, c0, 0  ; disabled cache RAMs
ISB
; Clean entire data cache. This routine depends on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data 

Disabling or enabling instruction cache

The following code is an example of enabling the instruction cache:

MRC p15, 0, r1, c1, c0, 0  ; Read System Control Register configuration data
ORR r1, r1, #0x1 <<12      ; instruction cache enable
MCR p15, 0, r0, c7, c5, 0  ; Invalidate entire instruction cache
MCR p15, 0, r1, c1, c0, 0  ; enabled instruction cache
ISB

The following code is an example of disabling the instruction cache:

MRC p15, 0, R1, c1, c0, 0   ; Read System Control Register configuration data
BIC r1, r1, #0x1 <<12       ; instruction cache enable
MCR p15, 0, r1, c1, c0, 0   ; disabled instruction cache
ISB

Disabling or enabling data cache

The following code is an example of enabling the data cache:

MRC p15, 0, r1, c1, c0, 0  ; Read System Control Register configuration data
ORR r1, r1, #0x1 <<2
DSB
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, r1, c1, c0, 0  ; enabled data cache

The following code is an example of disabling the cache RAMs:

MRC p15, 0, r1, c1, c0, 0  ; Read System Control Register configuration data
BIC r1, r1, #0x1 <<2
DSB
MCR p15, 0, r1, c1, c0, 0  ; disabled data cache
; Clean entire data cache. This routine depends on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data.

Disabling or enabling error checking

Software must take care when changing the error checking bits in the Auxiliary Control 
Register. If the bits are changed when the caches contain data, the parity or ECC bits in the 
caches might not be correct for the new setting, resulting in unexpected errors and data loss. 
Therefore the bits in the Auxiliary Control Register must only be changed when both caches are 
turned off and the entire cache must be invalidated after the change.

The following code is the sequence ARM recommends to perform the change:

MRC p15, 0, r0, c1, c0, 0  ; Read System Control Register
BIC r0, r0, #0x1 << 2      ; Disable data cache bit
BIC r0, r0, #0x1 << 12     ; Disable instruction cache bit
DSB
MCR p15, 0, r0, c1, c0, 0  ; Write System Control Register
ISB ; Ensures following instructions are not executed from cache
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-32
ID092411 Non-Confidential



Level One Memory System 
; Clean entire data cache. This routine depends on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data, for example if the cache 
has not been enabled yet.
MRC p15, 0, r1, c1, c0, 1  ; Read Auxiliary Control Register
; Change bits 5:3 as required
MCR p15, 0, r1, c1, c0, 1  ; Write Auxiliary Control Register
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, r0, c7, c5, 0  ; Invalidate entire instruction cache
MRC p15, 0, r0, c1, c0, 0  ; Read System Control Register
ORR r0, r0, #0x1 << 2      ; Enable data cache bit
ORR r0, r0, #0x1 << 12     ; Enable instruction cache bit
DSB
MCR p15, 0, r0, c1, c0, 0  ; Write System Control Register
ISB
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-33
ID092411 Non-Confidential



Level One Memory System 
8.6 Internal exclusive monitor
The processor L1 memory system has an internal exclusive monitor. This is a two state, open 
and exclusive, state machine that manages load/store exclusive (LDREXB, LDREXH, LDREX, LDREXD, 
STREXB, STREXH, STREX and STREXD) accesses and clear exclusive (CLREX) instructions. You can use 
these instructions, operating in the L1 memory system, to construct semaphores and ensure 
synchronization between different processes. By adding an external exclusive monitor, you can 
also use these instructions in the L2 memory system to construct semaphores and ensure 
synchronization between different processors. See the ARM Architecture Reference Manual for 
more information about how these instructions work.

When a load-exclusive access is performed, the internal exclusive monitor moves to the 
exclusive state. It moves back to the open state when a store exclusive access or clear exclusive 
instruction is performed. The internal exclusive monitor holds exclusivity state for an individual 
Cortex-R5 CPU only. It does not record the address of the memory that a load-exclusive access 
was performed to and it does not observe accesses from the other CPU in a twin-CPU group. 
Any store exclusive access performed when the state is open fails. If the state is exclusive, the 
access passes if it is to non-shared memory but, if it is to shared memory, the access must be 
performed as an exclusive using the L2 memory interface. Whether the shared store-exclusive 
access passes or fails depends on the state of an external exclusive monitor that can track 
accesses made by other processors in the system.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-34
ID092411 Non-Confidential



Level One Memory System 
8.7 Memory types and L1 memory system behavior
The behavior of the L1 memory system depends on the type attribute of the memory that is being 
accessed:

• Only Normal, non-shared memory regions can be cached in the RAMs. Caching only 
takes place if the appropriate cache is enabled and the memory type is Cacheable.

• The store buffer can merge any stores to Normal memory. See Store buffer on page 8-18 
for more information.

• Only Normal memory is considered restartable, that is, a multi-word transfer can be 
abandoned part way through because of an interrupt, to be restarted after the interrupt has 
been handled. See Interrupts on page 3-19 for more information about interrupt behavior.

• Only the internal exclusive monitor is used for exclusive accesses to Non-shared memory. 
Exclusive accesses to shared memory are checked using the internal monitor and also, if 
necessary, any external monitor, using the L2 memory interface.

• Accesses resulting from SWP and SWPB instructions to Normal, non-shared memory are not 
marked as locked when performed using the L2 memory interface.

Note
 Not all types of exclusive or swap access are permitted to peripheral interface regions. See 

Semaphores on page 9-52.

Table 8-17 summarizes the processor memory types and associated behavior. 

Table 8-17 Memory types and associated behavior

Memory type Can be cached Merging Restartable Internal exclusives Locked swaps

Normal Shared No Yes Yes Partially Yes

Non-shared Yes Yes Yes Yes No

Device Shared No No No Partially Yes

Non-shared No No No Yes Yes

Strongly Ordered Shared No No No Partially Yes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-35
ID092411 Non-Confidential



Level One Memory System 
8.8 Error detection events
The processor generates a number of events related to the internal error detection and correction 
schemes in the TCMs and caches. For more information, see Table 6-1 on page 6-2. This section 
describes:
• TCM error events
• Instruction-cache error events
• Data-cache error events
• Events and the CFLR.

8.8.1 TCM error events

TCM ECC error events are only signaled for TCM reads, although this includes the 
read-modify-write sequence performed for some stores. Most errors detected by the ECC logic 
are signaled twice:
• once on a TCM-centric event
• once on a processor-centric event.

The TCM-centric events consist of two events per TCM port, one for fatal, that is, 2-bit ECC 
errors and one for correctable, that is, 1-bit ECC errors. These events are generated three clock 
cycles after the data read cycle. Consequently, these events are sometimes signaled on 
speculative TCM reads, such as instructions that are prefetched but never executed because of 
a branch earlier in the instruction sequence.

Note
 When an external error is signaled on a TCM access, the TCM-centric events are still generated 
as appropriate, based on the data returned, as if no external error had been signaled.

The processor-centric TCM events are only signaled for errors in data that would have otherwise 
been used by the processor. Errors on speculative reads never generate these errors. They consist 
of fatal and correctable events for:
• the prefetch unit, to signal errors on instruction fetches
• the load/store unit, to signal errors on data accesses
• the AXI slave interface, to signal errors on DMA accesses.

8.8.2 Instruction-cache error events

All parity and ECC errors are correctable in the I-Cache. Therefore there are only two events, 
to indicate when an error is detected in a read from the tag RAM, or from the data RAM. These 
events are only signaled for non-speculative instruction fetches and certain cache maintenance 
operations. See Cache error detection and correction on page 8-20.

8.8.3 Data-cache error events

The D-Cache can generate fatal and correctable errors, and therefore has four events, one for 
each type of error in the data RAM and in the tag or dirty RAMs. These events are only signaled 
for non-speculative data accesses, cache line evictions, coherency maintenance operations, and 
certain cache maintenance operations. See Cache error detection and correction on page 8-20.

8.8.4 Events and the CFLR

The Correctable Fault Location Register (CFLR) records the location of the last correctable 
error detected on a non-speculative access or coherency maintenance operations. See 
Correctable Fault Location Register on page 4-77 for more information. Every correctable error 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-36
ID092411 Non-Confidential



Level One Memory System 
that is recorded in the CFLR also generates an event. See Table 6-1 on page 6-2 to see which 
events are CFLR-related. For correctable cache errors, the CLFR does not record whether the 
error occurred in the data RAM or tag/dirty RAM. This distinction is only made by the events.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 8-37
ID092411 Non-Confidential



Chapter 9 
Level Two Interface

This chapter describes the features of the Level two (L2) interface not covered in the AMBA AXI 
Protocol Specification. It contains the following sections:
• About the L2 interface on page 9-2
• AXI master interface on page 9-5
• AXI master interface transfers on page 9-8
• AXI slave interface on page 9-21
• Enabling or disabling AXI slave accesses on page 9-24
• Accessing RAMs using the AXI slave interface on page 9-25
• Peripheral interfaces on page 9-36
• Accelerator Coherency Port interface on page 9-53.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-1
ID092411 Non-Confidential



Level Two Interface 
9.1 About the L2 interface
This section describes the processor L2 interface. The L2 interface consists of:
• AXI master interface
• AXI slave interface 
• three peripheral interfaces
• ACP interface.

The processor is designed for use in larger chip designs using the Advanced Microcontroller Bus 
Architecture (AMBA) AXI and AHB protocols. Instruction fetches and data accesses that the 
L1 memory system does not service, and peripheral accesses, are performed through the 
AXI-master interface or one of the peripheral interfaces. See: 

• AXI master interface on page 9-5 for more information about the AXI master interface

• AXI peripheral port transfers on page 9-39 for more information about the AXI peripheral 
interface

• AHB peripheral port transfers on page 9-46 for more information about the AHB 
peripheral interface.

External AXI masters, that can include the processor itself, can use the AXI slave interface to 
access the processor RAMs. You can use the AXI slave interface for DMA access into and out 
of the TCMs or to perform software test of the cache RAMs. See AXI slave interface on 
page 9-21.

The ACP interface enables the Cortex-R5 processor to observe memory transactions that other 
AXI masters perform, and keep the L1 caches coherent with those transactions. See Accelerator 
Coherency Port interface on page 9-53 for more information about the ACP interface.

You can configure all of the ports associated with the L2 interfaces with bus-ECC. The bus-ECC 
feature uses additional signals to communicate redundant information, enabling the detection or 
correction of errors that occur on the bus signals. See Bus ECC for more information.

ARM recommends that the memory regions you configure for ATCM, BTCM, the AXI 
peripheral port, and the AHB peripheral port do not overlap. However, if one or more regions 
do overlap, the processor uses the following priority scheme to determine which interface is 
accessed:
1. ATCM (highest priority)
2. BTCM
3. AXI peripheral port
4. AHB peripheral port
5. AXI-M (lowest priority)

The processor also uses this scheme to decide which interface is accessed when any of the 
interfaces are disabled. For example, accessing the PP AXI region when the LLPP AXI 
interface is disabled results in an access to the AXI-M interface, assuming the address is not in 
the LLPP AHB region.

9.1.1 Bus ECC

You can configure a Cortex-R5 processor with bus ECC to protect the integrity of AMBA bus 
signals. The bus ECC feature of the Low Latency Peripheral Port is configured separately from 
the other bus interfaces. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-2
ID092411 Non-Confidential



Level Two Interface 
Bus ECC uses both parity and Single Error Correct Double Error Detect (SEC-DED) Error 
Correcting Codes (ECC). The Cortex-R5 processor computes and checks parity bits as odd or 
even, depending on the value of the PARITYLEVEL primary input, except for AXI handshake 
signals that have fixed, odd parity.

ECC and parity errors, detected by the Cortex-R5 processor, do not directly cause aborts, 
exceptions or otherwise affect the CPU operation. Instead, event primary outputs notify the 
system of correctable or fatal errors. The CPU treats all bus control and response signals as 
correct, even if parity errors are reported. It is possible that fatal, that is double-bit, ECC errors 
might cause more data corruption. This can result in the CPU operating on corrupted data, or 
behaving unpredictably, based on corrupted control or response signals.

Bus ECC functionality checks for errors on every bus transfer the CPU performs. This can 
include speculative accesses for which data is later discarded. The CPU: 
• reports bus faults for all transfers whose data it uses
• never reports bus data faults for transfers where the bus master sees an error response.

AXI Interfaces

The Cortex-R5 processor uses the following scheme to protect AXI signals:

• Fixed, odd parity on channel VALID and READY signals.

• Parity on address and control payload signals. Each parity bit protects a maximum of eight 
payload bits.

• SEC-DED ECC to protect read and write data payload.

AHB Interfaces

The Cortex-R5 processor uses the following scheme to protect AHB signals:

• Parity on address and control signals. Each parity bit protects a maximum of eight payload 
bits

• SEC-DED ECC to protect data payload.

Debug APB Interface

Bus ECC is not available for this interface.

Notifications

The Cortex-R5 bus ECC feature provides the following notifications:

• Correctable errors on read data received by the AXI Master and Peripheral Port, through 
primary outputs.

• Correctable errors on write data received by the AXI Slave through a primary output.

• Logical address of transfers with correctable errors on master ports, to doubleword 
granularity.

• Memory chip select and logical address of transfers with correctable errors on the AXI 
Slave, to doubleword granularity.

• Fatal errors on AXI ports using one primary output bit per channel per port.

• Fatal errors on the AHB Peripheral Port through a primary output.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-3
ID092411 Non-Confidential



Level Two Interface 
• A correctable bus fault event in the event bus, EVNTBUSm. See About the events on 
page 6-2.

• A fatal bus fault event in the event bus, EVNTBUSm. See About the events on page 6-2.

• Increments to correctable and fatal bus fault event counters for the Performance 
Monitoring Unit (PMU). See About the events on page 6-2.

Concurrent Bus Fault Events

The Cortex-R5 event bus and PMU logic monitors bus fault events on all Cortex-R5 AXI and 
AHB interfaces simultaneously. It merges bus faults that occur in the same CPU clock cycle, on 
different bus interfaces. For example, if correctable errors occur on both the AXI master and 
AXI slave, in the same CPU clock cycle, only one event is logged.

Bus Master Correctable Error Address Reporting

The Cortex-R5 processor has one primary output for reporting the logical address of a transfer 
with a correctable error, on the AXI master port, or the AXI and AHB Peripheral Ports. 
Concurrent correctable bus faults on the AXI master and the Peripheral Port cause the address 
to be reported for the AXI master only. Correctable errors do not occur concurrently on the AHB 
and AXI Peripheral Ports, see Peripheral interfaces on page 9-36 for more information about 
the Cortex-R5 Peripheral Port.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-4
ID092411 Non-Confidential



Level Two Interface 
9.2 AXI master interface
The processor has a single AXI master interface, with one port that is used for:
• I_Cache linefills
• D_Cache linefills and evictions
• Non-cacheable (NC) Normal-type memory instruction fetches
• NC Normal-type memory data accesses
• Device and Strongly-ordered type data accesses, normally to peripherals.

The port is 64 bits wide, and conforms to the AXI3 standard as described in the AMBA AXI 
Protocol Specification. Within the AXI standard, the master port uses a number of extension 
signals to indicate inner memory attributes and, if configured with bus-ECC, parity or ECC 
information. See AXI extensions on page 9-7 for more information about attribute encodings and 
Bus ECC on page 9-2 for more information about bus-ECC.

The master interface can run at the same frequency as the processor or at a lower synchronous 
frequency. See AMBA interface clocking on page 2-16 for more information.

Note
 References in this section to an AXI slave refer to the AXI slave in the external system that is 
connected to the Cortex-R5 AXI master port. This is not necessarily the Cortex-R5 AXI slave 
port.

The following sections describe the attributes of the AXI master interface, and provide 
information about the types of burst generated:
• Identifiers for AXI bus accesses on page 9-6
• Write response on page 9-6
• Linefill buffers and the AXI master interface on page 9-6
• Eviction buffer on page 9-7
• AXI extensions on page 9-7.
• Memory system implications for AXI accesses on page 9-7.

Table 9-1 shows the AXI master interface attributes.

Table 9-1 AXI master interface attributes

Attribute Value Comments

Write issuing capability 4 Made up of four outstanding writes that can be evictions, single writes, or write bursts.a

Read issuing capability 7 Made up of five linefills on the data side, one NC read on the data side, and one read on the 
instruction side, that can be NC or linefill.

Combined issuing capability 11a -

Write ID capability 2 -

Write interleave capability 1 The AXI master interface presents all write data in order.

Read ID capability 7 Made up of five linefills on the data side, one NC read on the data side, and one linefill or 
NC read on the instruction side.

a. When there are three outstanding write transactions, only data is issued for the fourth. Only three outstanding write addresses are issued.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-5
ID092411 Non-Confidential



Level Two Interface 
9.2.1 Identifiers for AXI bus accesses

Accesses on the AXI bus use ID values as follows:

Outstanding write/read access on different IDs 
This means, for example, that a Non-cacheable (NC) read and linefills can be 
outstanding on the AXI bus simultaneously as long as the IDs are different. 
At the same time, there can be:
• up to seven outstanding reads, each with one of seven different ID values, 

that consists of:
— a data side read NC access, RID0
— an instruction side read NC access or an instruction side read 

Cacheable access, RID1
— five outstanding data side linefills on the AXI bus, RID3 - RID7.

• up to two IDs on outstanding writes, that consist of:
— single or burst NC writes or write-through (WT) writes, WID0
— evictions, WID1.

Outstanding write accesses with the same ID 
When the address and data of the first write are both put on AXI bus, another write 
request with same ID can be sent when the address or data channel is released. 
For example, the new address can be sent with the same ID, before the target 
accepts the data of the first write.

Note
 • The AXI master does not generate two outstanding read accesses with the same ID.

• The AXI master does not interleave write data from two different bursts, even if the bursts 
have different IDs.

9.2.2 Write response

The AXI master requires that the slave does not return a write response until it has received both 
the write data and the write address.

9.2.3 Linefill buffers and the AXI master interface

On the data side there are two LineFill Buffers (LFBs), LFB0 and LFB1. Each request from the 
data cache controller or from the STore Buffer (STB) can be allocated to either LFB0 or LFB1.

On the instruction side, there is one LFB. This is the Instruction LFB (ILFB), that treats 
instruction linefill requests or Non-cacheable instruction reads in the same way. 

The linefill buffers:
• get returned data from the AXI bus for linefill requests
• get returned data from the AXI bus for any Non-cacheable LDR or LDMs
• get data from the STB to write as a burst on the AXI bus (LFB0 and LFB1 only).

Single writes do not use LFBs.

The LFBs are 256 bits wide so that an entire cache line can be written to the cache RAMs in one 
cycle. While the LFB is being filled from L2 memory, its bytes can be merged with write data 
from the STB.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-6
ID092411 Non-Confidential



Level Two Interface 
9.2.4 Eviction buffer

As soon as a linefill is requested, the selected evicted cache line is loaded into the EViction 
Buffer (EVB). The EVB forwards this information to the AXI bus when possible.

The EVB has a structure of 256 bits for data and 32 bits for the address. See Cache line 
write-back (eviction) on page 9-14 for more information about the AXI transaction generated.

The EVB is removed if cache RAMs are not implemented for the processor.

9.2.5 AXI extensions

The Cortex-R5 AXI master interface uses the ARCACHEMm, AWCACHEMm, AXI signals 
and the ARSHAREMm, AWSHAREMm, ARINNERMm, and AWINNERMm extension 
signals to indicate the memory attributes of the transfer, as returned by the MPU. Table 9-2 
shows the encodings used for these signals. ARCACHEMm and AWCACHEMm of the 
master interface are generated from the memory type and outer region attributes. 
ARINNERMm and AWINNERMm are generated from the memory type and inner region 
attributes. ARSHAREMm and AWSHAREMm are asserted for transactions to shared 
memory regions.

Additional AXI extension signals on all the AXI master channels are used for bus-ECC and 
parity information.

9.2.6 Memory system implications for AXI accesses

The attributes of the memory being accessed can affect an AXI access. The L1 memory system 
can cache any Normal memory address that is marked as either:
• Cacheable, write-back, read- and write-allocate, non-shared
• Cacheable, write-through, read-allocate only, non-shared.

However, Device and Strongly Ordered memory is always Non-cacheable. Also, any unaligned 
access to Device or Strongly Ordered memory generates an alignment fault and therefore does 
not cause any AXI transfer. This means that the access examples given in this chapter never 
show unaligned accesses to Device or Strongly Ordered memory.

Table 9-2 ARCACHEMm, AWCACHEMm, ARINNERMm, and AWINNERMm encodings

Encodinga

a. All encodings not shown in the table are reserved.

Meaning

b0000 Strongly Ordered

b0001 Device

b0011 Non-cacheable 

b0110 Cacheable, write-through, allocate on reads only

b0111 Cacheable, write-back, allocate on reads only

b1111 Cacheable write-back, allocate on reads and writes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-7
ID092411 Non-Confidential



Level Two Interface 
9.3 AXI master interface transfers
The processor conforms to the AXI3 specification, but it does not generate all the AXI 
transaction types that the specification permits. This section describes the types of AXI 
transaction that the Cortex-R5 AXI master does not generate. If you are designing an AXI slave 
to work only with the Cortex-R5 processor, and there are no other AXI masters in your system, 
you can take advantage of these restrictions and the interface attributes, described in Table 9-1 
on page 9-5, to simplify the slave.

This section also contains tables that show some examples of the types of AXI burst that the 
processor generates. However, because a particular type of transaction is not shown here does 
not mean that the processor does not generate such a transaction.

Note
 An AXI slave device connected to the Cortex-R5 AXI master port must be capable of handling 
every kind of transaction permitted by the AXI specification, except where there is an explicit 
statement in this chapter that such a transaction is not generated. You must not infer any 
additional restrictions from the example tables given. Restrictions described here apply to the 
r0p0 to r1p1revisions of the processor, but might not be true for future revisions.

Load and store instructions to Non-cacheable memory might not result in an AXI transfer 
because the data might either be retrieved from, or merged into the internal store data buffers. 
The exceptions to this are loads or stores to Strongly Ordered or Device memory. These always 
result in AXI transfers. See Strongly Ordered and Device transactions on page 9-9.

Restrictions on AXI transfers on page 9-9 describes restrictions on the type of transfers that the 
Cortex-R5 AXI master interface generates. If a CPUm exists and is powered up, the buffered 
write response and read data channel ready signals, BREADYMm and RREADYMm, are 
always asserted. They are, however, deasserted when the CPU enters Dormant or Shutdown 
mode. You must not make any other assumptions about the AXI handshaking signals, except 
that they conform to the AMBA AXI Protocol Specification.

The following sections give examples of transfers generated by the AXI master interface:
• Restrictions on AXI transfers on page 9-9
• Strongly Ordered and Device transactions on page 9-9
• Linefills on page 9-14
• Cache line write-back (eviction) on page 9-14
• Non-cacheable reads on page 9-14
• Non-cacheable or write-through writes on page 9-16
• AXI transaction splitting on page 9-17
• Normal write merging on page 9-18.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-8
ID092411 Non-Confidential



Level Two Interface 
9.3.1 Restrictions on AXI transfers

The Cortex-R5 AXI master interface applies the following restrictions to the AXI transactions 
it generates:

• A burst never transfers more than 32 bytes.

• The burst length is never more than 8 transfers.

• No transaction ever crosses a 32-byte boundary in memory. See AXI transaction splitting 
on page 9-17.

• FIXED bursts are never used.

• The write address channel always issues INCR type bursts, and never WRAP or FIXED.

• WRAP type read bursts, see Linefills on page 9-14:
— are used only for linefills (reads) of Cacheable Normal non-shared memory
— always have a size of 64 bits, and a length of 4 transfers
— always have a start address that is 64-bit aligned.

• If the transfer size is 8 bits or 16 bits then the burst length is always 1 transfer.

• The transfer size is never greater than 64 bits, because it is a 64-bit AXI bus.

• Instruction fetches, identified by ARPROT[2], are always a 64 bit transfer size, and never 
locked or exclusive.

• Transactions to Device and Strongly Ordered memory are always to addresses that are 
aligned for the transfer size. See Strongly Ordered and Device transactions.

• Exclusive and Locked accesses are always to addresses that are aligned for the transfer 
size.

• Write data is never interleaved.

• In addition to these restrictions, there are various limitations to the ID values that the AXI 
master interface uses. See Identifiers for AXI bus accesses on page 9-6.

9.3.2 Strongly Ordered and Device transactions

A load or store instruction to or from Strongly Ordered or Device memory always generates 
AXI transactions of the same size as implied by the instruction. All accesses using LDM, STM, LDRD, 
or STRD instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-3 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDRB from bytes 0-7 in Strongly Ordered or Device memory.

Table 9-3 Non-cacheable LDRB

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer

0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-9
ID092411 Non-Confidential



Level Two Interface 
LDRH

Table 9-4 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDRH from halfwords 0-3 in Strongly Ordered or Device 
memory.

Note
 A load of a halfword from Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7 
generates an alignment fault.

LDR or LDM that transfers one register

Table 9-5 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDR or an LDM that transfers one register, (an LDM1) in Strongly 
Ordered or Device memory.

Note
 A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 
0x7 generates an alignment fault.

0x4 (byte 4) 0x04 Incr 8-bit 1 data transfer

0x5 (byte 5) 0x05 Incr 8-bit 1 data transfer

0x6 (byte 6) 0x06 Incr 8-bit 1 data transfer

0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer

Table 9-4 LDRH from Strongly Ordered or Device memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer

0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer

0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer

Table 9-5 LDR or LDM1 from Strongly Ordered or Device memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer

Table 9-3 Non-cacheable LDRB (continued)

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-10
ID092411 Non-Confidential



Level Two Interface 
LDM that transfers five registers

Table 9-6 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDM that transfers five registers (an LDM5) in Strongly Ordered 
or Device memory.

Note
 A load-multiple from address 0x1, 0x2, 0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xD, 0xE, or 0xF generates 
an alignment fault.

Table 9-6 LDM5, Strongly Ordered or Device memory

Address[3:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (word 0) 0x00 Incr 32-bit 5 data transfers

0x4 (word 1) 0x04 Incr 32-bit 5 data transfers

0x8 (word 2) 0x08 Incr 32-bit 5 data transfers

0xC (word 3) 0x0C Incr 32-bit 5 data transfers
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-11
ID092411 Non-Confidential



Level Two Interface 
STRB

Table 9-7 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STRB to Strongly Ordered or Device memory over the AXI master port.

STRH

Table 9-8 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STRH over the AXI master port to Strongly Ordered or Device memory.

Note
 A store of a halfword to Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7 
generates an alignment fault.

Table 9-7 STRB to Strongly Ordered or Device memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer b00000001

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer b00000010

0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer b00000100

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer b00001000

0x4 (byte 4) 0x04 Incr 8-bit 1 data transfer b00010000

0x5 (byte 5) 0x05 Incr 8-bit 1 data transfer b00100000

0x6 (byte 6) 0x06 Incr 8-bit 1 data transfer b01000000

0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer b10000000

Table 9-8 STRH to Strongly Ordered or Device memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer b00000011

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer b00001100

0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer b00110000

0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer b11000000
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-12
ID092411 Non-Confidential



Level Two Interface 
STR or STM of one register

Table 9-9 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STR or an STM that transfers one register (an STM1) over the AXI master port 
to Strongly Ordered or Device memory. 

Note
 A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 
0x7 generates an alignment fault.

STM of seven registers

Table 9-10 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STM that writes seven registers (an STM7) over the AXI master port to 
Strongly Ordered or Device memory.

Note
 A store-multiple to address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment fault.

Table 9-9 STR or STM1 to Strongly Ordered or Device memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (word0) 0x00 Incr 32-bit 1 data transfer b00001111

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer b11110000

Table 9-10 STM7 to Strongly Ordered or Device memory to word 0 or 1

Address[4:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm First WSTRBMm

0x00 (word 0) 0x00 Incr 32-bit 7 data transfers b00001111

0x04 (word 1) 0x04 Incr 32-bit 7 data transfers b11110000
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-13
ID092411 Non-Confidential



Level Two Interface 
9.3.3 Linefills

Loads and instruction fetches from Normal, Cacheable memory that do not hit in the cache 
generate a cache linefill when the appropriate cache is enabled. Table 9-11 shows the values of 
ARADDRMm, ARBURSTMm, ARSIZEMm, and ARLENMm for cache linefills.

9.3.4 Cache line write-back (eviction)

When a valid and dirty cache line is evicted from the d-cache, a write-back of the data must 
occur. Table 9-12 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for cache line write-backs, over the AXI master interface. 

9.3.5 Non-cacheable reads

Load instructions accessing Non-cacheable Normal memory generate AXI bursts that are not 
necessarily the same size or length as the instruction implies. In addition, if the data to be read 
is contained in the store buffer, the instruction might not generate an AXI read transaction at all.

The tables in this section give examples of the types of AXI transaction that might result from 
various load instructions, accessing various addresses in Non-cacheable Normal memory. They 
are provided as examples only, and are not an exhaustive description of the AXI transactions. 
Depending on the state of the processor, and the timing of the accesses, the actual bursts 
generated might have a different size and length to the examples shown, even for the same 
instruction.

Table 9-13 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for an LDRH from bytes 0-7 in Non-cacheable Normal memory.

Table 9-11 Linefill behavior on the AXI interface

Address[4:0]a

a. These are the bottom five bits of the address of the access that cause the linefill, that is, the 
address of the critical word.

ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x00-0x07 0x00 Wrap 64-bit 4 data transfers

0x08-0x0F 0x08 Wrap 64-bit 4 data transfers

0x10-0x17 0x10 Wrap 64-bit 4 data transfers

0x18-0x1F 0x18 Wrap 64-bit 4 data transfers

Table 9-12 Cache line write-back

AWADDRMm[4:0] AWBURSTMm AWSIZEMm AWLENMm

0x00 Incr 64-bit 4 data transfers

Table 9-13 LDRH from Non-cacheable Normal memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (byte 0) 0x00 Incr 16-bit 1 data transfer

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer

0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-14
ID092411 Non-Confidential



Level Two Interface 
Table 9-14 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDR or an LDM that transfers one register, an LDM1.

Table 9-15 show possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for a Non-cacheable LDM that transfers five registers (an LDM5).

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer

0x7 (byte 7) 0x07 Incr 32-bit 2 data transfers

Table 9-14 LDR or LDM1 from Non-cacheable Normal memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer

0x1 (byte 1) 0x01 Incr 64-bit 1 data transfer

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer

0x3 (byte 3) 0x00 Incr 64-bit 2 data transfers

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer

0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer

0x08 Incr 16-bit 1 data transfer

0x7 (byte 7) 0x04 Incr 32-bit 2 data transfers

Table 9-15 LDM5, Non-cacheable Normal memory or cache disabled

Address[4:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x00 (word 0) 0x00 Incr 64-bit 3 data transfers

0x04 (word 1) 0x04 Incr 64-bit 3 data transfers

0x08 (word 2) 0x08 Incr 64-bit 3 data transfers

0x0C (word 3) 0x0C Incr 64-bit 3 data transfers

0x10 (word 4) 0x10 Incr 64-bit 2 data transfers

0x00 Incr 32-bit 1 data transfer

0x14 (word 5) 0x14 Incr 64-bit 2 data transfers

0x00 Incr 64-bit 1 data transfer

Table 9-13 LDRH from Non-cacheable Normal memory (continued)

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-15
ID092411 Non-Confidential



Level Two Interface 
9.3.6 Non-cacheable or write-through writes

Store instructions to Non-cacheable or write-through Normal memory generate AXI bursts that 
are not necessarily the same size or length as the instruction implies. The AXI master port 
asserts byte-lane-strobes, WSTRBMm[7:0], to ensure that only the bytes that were written by 
the instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from 
various store instructions, accessing various addresses in Non-cacheable Normal memory. They 
are provided as examples only, and are not an exhaustive description of the AXI transactions. 
Depending on the state of the processor, and the timing of the accesses, the actual bursts 
generated might have a different size and length to the examples shown, even for the same 
instruction.

In addition, write operations to Normal memory can be merged to create more complex AXI 
transactions. See Normal write merging on page 9-18 for examples.

Table 9-16 shows possible values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STRH to Normal memory.

0x18 (word 6) 0x18 Incr 64-bit 1 data transfer

0x00 Incr 64-bit 2 data transfers

0x1C (word 7) 0x1C Incr 32-bit 1 data transfer

0x00 Incr 64-bit 2 data transfers

Table 9-15 LDM5, Non-cacheable Normal memory or cache disabled  (continued)

Address[4:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

Table 9-16 STRH to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer b00000011

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer b00000110

0x2 (byte 2) 0x02 Incr 64-bit 1 data transfer b00001100

0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers b00001000
b00010000

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer b00110000

0x5 (byte 5) 0x05 Incr 32-bit 1 data transfer b01100000

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer b11000000

0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer b10000000

0x08 Incr 8-bit 1 data transfer b00000001
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-16
ID092411 Non-Confidential



Level Two Interface 
Table 9-17 shows possible values of AWADDRMm, AWBURSTMm, AWSIZEMm, and 
AWLENMm for an STR or an STM that transfers one register, an STM1, to Normal memory through 
the AXI master port. 

9.3.7 AXI transaction splitting

The processor splits AXI bursts when it accesses addresses across a cache line boundary, that 
is, a 32-byte boundary. An instruction that accesses memory across one or two 32-byte 
boundaries generates two or three AXI bursts respectively. The following examples show this 
behavior. They are provided as examples only, and are not an exhaustive description of the AXI 
transactions. Depending on the state of the processor, and the timing of the accesses, the actual 
bursts generated might have a different size and length to the examples shown, even for the same 
instruction.

For example, LDMIA R10, {R0-R5} loads six words from memory. The number of AXI 
transactions generated by this instruction depends on the base address, R10:

• If all six words are in the same cache line, there is a single AXI transaction. For example, 
for LDMIA R10, {R0-R5} with R10 = 0x1008, the interface might generate a burst of three, 
64-bit read transfers, as shown in Table 9-18.

Table 9-17 STR or STM1 to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer b00001111

0x1 (byte 1) 0x01 Incr 64-bit 1 data transfer b00011110

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer b00111100

0x3 (byte 3) 0x03 Incr 64-bit 2 data transfers b01111000
b00000000

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer b11110000

0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers b11100000
b00000001

0x6 (byte 6) 0x06

0x08

Incr
Incr

16-bit
16-bit

1 data transfer
1 data transfer

b11000000
b00000011

0x7 (byte 7) 0x04 Incr 32-bit 2 data transfers b10000000
b00000111

Table 9-18 AXI transaction splitting, all six words in same cache line

ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1008 Incr 64-bit 3 data transfers
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-17
ID092411 Non-Confidential



Level Two Interface 
• If the data comes from two cache lines, then there are two AXI transactions. For example, 
for LDMIA R10, {R0-R5} with R10 = 0x1010, the interface might generate one burst of two 
64-bit reads, and one burst of a single 64-bit read, as shown in Table 9-19.

Table 9-20 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for an LDR or LDM1 to Non-cacheable Normal memory that crosses a cache line 
boundary.

Table 9-21 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and 
ARLENMm for an STRH to Non-cacheable Normal memory that crosses a cache line boundary.

9.3.8 Normal write merging

A store instruction to Non-cacheable, or write-through Normal memory might not result in an 
AXI transfer because of the merging of store data in the internal buffers.

The STB can detect when it contains more than one write request to the same cache line for 
write-through Cacheable or Non-cacheable Normal memory. This means it can combine the 
data from more than one instruction into a single write burst to improve the efficiency of the 
AXI port. If the AXI master receives several write requests that do not form a single contiguous 
burst it can choose to output a single burst, with the WSTRBW signal low for the bytes that do 
not have any data.

For write accesses to Normal memory, the STB can perform writes out of order, if there are no 
address dependencies. It can do this to best use its ability to merge accesses.

The instruction sequence in Example 9-1 on page 9-19 shows the merging of writes.

Table 9-19 AXI transaction splitting, data in two cache lines

ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1010 Incr 64-bit 2 data transfers

0x1020 Incr 64-bit 1 data transfer

Table 9-20 Non-cacheable LDR or LDM1 crossing a cache line boundary

Address[4:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1D (byte 29) 0x1C Incr 32-bit 1 data transfer

0x00 Incr 32-bit 1 data transfer

0x1E (byte 30) 0x1E Incr 16-bit 1 data transfer

0x00 Incr 64-bit 1 data transfer

0x1F (byte 31) 0x1F Incr 8-bit 1 data transfer

0x00 Incr 32-bit 1 data transfer

Table 9-21 Cacheable write-through or Non-cacheable STRH crossing a cache line
boundary

Address[4:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x1F (byte 31) 0x1F Incr 8-bit 1 data transfer b10000000

0x00 Incr 16-bit 1 data transfer b00000001
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-18
ID092411 Non-Confidential



Level Two Interface 
Example 9-1 Write merging

MOV r0, #0x4000
STRH  r1, [r0, #0x18]; Store a halfword at 0x4018
STR   r2, [r0, #0xC] ; Store a word at 0x400C
STMIA r0, {r4-r7}    ; Store four words at 0x4000
STRB  r3, [r0, #0x1D]; Store a byte at 0x401D

If the memory at address 0x4000 is marked as Strongly Ordered or Device type memory, the AXI 
transactions shown in Table 9-22 are generated.

In Example 9-1, each store instruction produces an AXI burst of the same size as the data written 
by the instruction.

Table 9-23 shows a possible resulting transaction if the same memory is marked as 
Non-cacheable Normal, or Cacheable write-through.

In this example:

• The store buffer has merged the STRB and STRH writes into one buffer entry, and therefore 
a single AXI transfer, the fourth in the burst.

• The writes, that occupy three buffer entries, have been merged into a single AXI burst of 
four transfers.

• The write generated by the STR instruction has not occurred, because it was overwritten by 
the STM instruction.

• The write transfers have occurred out of order with respect to the original program order.

Table 9-22 AXI transactions for Strongly Ordered or Device type memory

AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x4018 Incr 16-bit 1 data transfer 0b00000011

0x400C Incr 32-bit 1 data transfer 0b11110000

0x4000 Incr 32-bit 4 data transfers 0b00001111
0b11110000
0b00001111
0b11110000

0x401D Incr 8-bit 1 data transfer 0b00100000

Table 9-23 AXI transactions for Non-cacheable Normal or Cacheable write-through
memory

AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x4000 Incr 64-bit 4 data transfers 0b11111111
0b11111111
0b00000000
0b00100011
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-19
ID092411 Non-Confidential



Level Two Interface 
The transactions shown in Table 9-23 on page 9-19 show this behavior. They are provided as 
examples only, and are not an exhaustive description of the AXI transactions. Depending on the 
state of the processor, and the timing of the accesses, the actual bursts generated might have a 
different size and length to the examples shown, even for the same instruction. 

If the same memory is marked as write-back Cacheable, and the addresses are allocated into a 
cache line, no AXI write transactions occur until the cache line is evicted and performs a 
write-back transaction. See Cache line write-back (eviction) on page 9-14.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-20
ID092411 Non-Confidential



Level Two Interface 
9.4 AXI slave interface
The processor has a single AXI slave interface, with one port. The port is 64 bits wide and 
conforms to the AXI3 standard as described in the AMBA AXI Protocol Specification. Within 
the AXI standard, the slave port uses the extension signals AWCSELSm and ARCSELSm each 
as four separate chip select input signals to enable access to:
• BTCM
• ATCM
• instruction cache RAMs
• data cache RAMs.

The external AXI system must generate the chip select signals. The slave interface routes the 
access to the required RAM.

If the processor is configured with bus-ECC, extension signals are also used for parity and ECC 
information. See Bus ECC on page 9-2 for more information about bus-ECC.

The slave interface can run at the same frequency as the processor or at a lower, synchronous 
frequency. See AMBA interface clocking on page 2-16 for more information. If asynchronous 
clocking is required, then an external asynchronous AXI register slice is required.

The AXI slave provides access to the TCMs and competes for access to the TCMs with the LSU 
and PFU. Both the LSU and PFU normally have a higher priority than the AXI slave.

If two BTCM ports are used, you can configure these to interleave in the address map, so any 
AXI slave access that is denied access to the BTCM on the first cycle of the access gains access 
on the second cycle when the LSU is using the other port, and can continue in lock-step with the 
LSU, assuming both are accessing sequential data. Accesses to the ATCM are more likely to 
encounter a conflict because there is only one port on the interface.

Memory BIST ports are routed through the AXI slave interface logic, to access the RAMs. 
Memory BIST access is assumed only to occur when no other accesses are taking place, and 
takes highest priority.

9.4.1 AXI slave interface for cache RAMs

Note
 You must not use the AXI slave to access the cache RAMs at the same time as the ACP. Ensure 
the ACP is idle before initiating AXI slave transactions to the cache RAMs.

You can use the AXI slave for software testing of the cache RAMs in functional mode. When 
the AXI slave is enabled to access the RAMs, the processor considers the caches as cache-off, 
so that the instruction and data requests cannot interact with AXI slave requests. In this state, 
only AXI slave requests can access the cache RAM and instruction and data requests from the 
processor are considered as non-cacheable and do not perform any lookup in the caches.

The AXI slave interface accesses each cache RAM individually.

On the instruction cache side the AXI slave can access:
• data cache RAMs, data and parity or ECC code bits
• tag RAMs, tag and valid, and parity or ECC code bits.

On the data cache side, the AXI slave can access:
• data cache RAMs, data and parity or ECC code bits
• tag RAMs, tag and valid, and parity or ECC code bits
• dirty RAM, dirty bit and attributes, and ECC code bits.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-21
ID092411 Non-Confidential



Level Two Interface 
A simple decode of four address bits and four way address bits determines which of the data, 
tag, or dirty RAMs is accessed within the caches. The AXI access is given a SLVERR error 
response when access to nonexistent cache RAM is indicated.

9.4.2 TCM ECC support

The TCMs can support ECC, as described in TCM internal error detection and correction on 
page 8-14. If a write transaction is issued to the AXI slave, the slave interface calculates the 
required ECC bits to store to the TCM. If the write data width is smaller than the ECC chunk 
size then a read-modify-write sequence is automatically performed by the AXI slave.

Note
 It is important to ensure that all writes to TCMs that do not contain the correct ECC bits for their 
data, such as uninitialized RAMs, are performed with a size of at least the ECC chunk size or 
with error checking disabled.

If a read transaction is issued to the AXI slave, the slave interface reads the ECC bits and, if 
error checking is enabled for the appropriate TCM, checks the data for errors. If the interface 
detects a correctable error, it corrects it inline and returns the correct data on the AXI bus. It does 
not update the data in the TCM to correct it. If the interface detects an uncorrectable error, it 
generates a SLVERR error response to the AXI transaction.

9.4.3 External TCM errors

If an error response is given to a TCM access from the AXI slave interface, and external errors 
are enabled for the appropriate TCM port, the AXI slave returns a SLVERR response to the AXI 
transaction.

The AXI slave ignores late-error and retry responses from the TCM.

9.4.4 Cache parity and ECC support

When the caches support parity or ECC, the AXI slave interface permits direct read and write 
access to the parity or ECC code bits. No errors are detected automatically, and on writes the 
AXI slave does not automatically generate the correct parity or ECC code values.

Note
 The AXI slave interface provides read/write access to the cache RAMs for functional test. It is 
not suitable for preloading the caches.

9.4.5 AXI slave control

By default, both privileged and non-privileged accesses can be made to the Cortex-R5 TCM 
RAMs through the AXI slave port. To disable non-privileged accesses, you can set bit [1] in the 
Slave Port Control Register. You can disable all slave accesses by setting bit [0] of the register. 
See c11, Slave Port Control Register on page 4-65.

Access to the cache RAMs can only be made when bit [24] of the Auxiliary Control Register is 
set. By default, only privileged accesses can be made to the cache RAMs, but you can enable 
non-privileged accesses by setting bit [23] of the Auxiliary Control Register. When cache RAM 
access is enabled, both caches are treated as if they were not enabled. See c1, Auxiliary Control 
Register on page 4-41.

The AXI access is given a SLVERR error response when access is not permitted.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-22
ID092411 Non-Confidential



Level Two Interface 
9.4.6 AXI slave characteristics

This section describes the capabilities of the AXI slave interface, and the attributes of its AXI 
port. You must not make any other assumptions about the behavior of the AXI slave port except 
that it conforms to the AMBA AXI 3 Protocol Specification.

• The AXI slave interface supports merging of data within bursts. When handling an AXI 
burst of data less than 64-bits wide, the AXI slave interface attempts to perform the 
minimum number of TCM or cache accesses required to read or write the data. When an 
ECC error scheme is in use, this sometimes reduces the number of read-modify-write 
sequences that the AXI slave must perform.

• The AXI slave interface does not support:
— Security Extensions, all accesses are secure, so AxPROT[1] is not used
— data and instruction transaction signaling, so AxPROT[2] is not used
— memory type and cacheability, so AxCACHE is not used
— atomic accesses. The AXI slave accepts locked transactions but makes no use of the 

locking information, that is, AxLOCK.

• The AXI slave interface has no exclusive access monitor. If there are any exclusive 
accesses, the AXI slave interface responds with an OKAY response.

• The width of the ID signals for the AXI slave port is 8 bits.
You must avoid building the processor into an AXI system that requires more than 8 bits 
of ID. The number of bits of ID required by a system can often be reduced by compressing 
the encoding to remove unused values. The AXI master port does not use all possible 
values. See Identifiers for AXI bus accesses on page 9-6 for more information.

Table 9-24 shows the AXI slave port attributes.

Table 9-24 AXI slave interface attributes

Attribute Value Comments

Combined acceptance capability 7 -

Write interleave depth 1 All write data must be presented to the AXI slave interface in order

Read data reorder depth 1 The AXI slave interface returns all read data in order, even if the bursts 
have different IDs
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-23
ID092411 Non-Confidential



Level Two Interface 
9.5 Enabling or disabling AXI slave accesses
This section describes how to enable or disable AXI slave accesses to the cache RAMs. When 
caches are accessible by the AXI slave interface, the caches are considered to be cache-off from 
the processor. You must ensure that the ACP is idle so that it does not generate any cache RAM 
accesses. After turning the interface on or off, an ISB instruction must flush the pipeline so that 
all subsequent instruction fetches return valid data.

The following code is an example of enabling AXI slave accesses to the cache RAMs:

MRC p15, 0, R1, c1, c0, 1  ; Read Auxiliary Control Register
ORR R1, R1, #0x1 <<24
; Ensure ACP is idle, that is. cannot access the cache and that no new ACP transactions
; can be generated
DSB
MCR p15, 0, R1, c1, c0, 1  ; enabled AXI slave accesses to the cache RAMs
ISB
; Clean entire data cache. This routine depends on the data cache size. It can be
; omitted if it is known that the data cache has no dirty data 
Fetch from uncached memory
Fetch from uncached memory
Fetch from uncached memory
Fetch from uncached memory

The following code is an example of disabling AXI slave accesses to the cache RAMs. No cache 
invalidation is performed because it is assumed that, after accessing the cache RAMs, the AXI 
slave interface restored the previously valid data to them.

MRC p15, 0, R1, c1, c0, 1    ; Read Auxiliary Control Register
BIC R1, R1, #0x1 <<24
DSB
MCR p15, 0, R1, c1, c0, 1    ; disabled AXI slave accesses to the cache RAMs
ISB
; Re-enable ACP transactions
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-24
ID092411 Non-Confidential



Level Two Interface 
9.6 Accessing RAMs using the AXI slave interface
This section describes how to access the TCM and cache RAMs using the AXI slave interface. 

Table 9-25 shows the bits of the ARCSELSm or AWCSELSm inputs, that determine the target 
of a transaction. Each signal is a one-hot 4-bit input, with each bit corresponding to a particular 
RAM or group of RAMs.

The remaining addressing information is encoded in ARADDRSm[22:0] for reads and 
AWADDRSm[22:0] for writes. The AXI-slave interface does not use the other bits of the 
address, ARADDRSm[31:23] and AWADDRSm[31:23], except for the purposes of bus-ECC. 
For more information see:
• TCM RAM access on page 9-26
• Cache RAM access on page 9-27.

Note
 Because AWCSELSm and AWADDRSm are similar to ARCSELSm and ARADDRSm, the 
following sections describe their common features as AxCSELSm and AxADDRSm, noting 
any differences between them. 

Table 9-25 RAM region decode

AxCSELSm bit One-hot RAM select

[3] Data cache RAMs

[2] Instruction cache RAMs

[1] B0TCM and B1TCM

[0] ATCM
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-25
ID092411 Non-Confidential



Level Two Interface 
9.6.1 TCM RAM access

AxADDRSm[22:3] indicates the address of the doubleword within the TCM that you want to 
access. If you are accessing a TCM that is smaller than the maximum 8MB, then it is possible 
to describe an address that is outside of the physical size of the TCM. This is not permitted and 
results in a SLVERR error response.

Table 9-26 shows the decode of the AxCSELSm[3:0] signal, and the state of the address signals 
for accessing different TCM RAMs. The table also shows the SLBTCMSBm configuration 
input signal that determines which address bit is used to select between the banks of a 
dual-banked BTCM.

Table 9-27 shows the most significant bit of the address for the different TCM RAM sizes. For 
split BTCMs, the TCM size is defined to be the total size of both the B0TCM and B1TCM 
combined. In this situation, the particular BTCM accessed is dependent on either 
AxADDRSm[MSB], if the input SLBTCMSBm is high, or AxADDRSm[3] otherwise. For 
example, if there are split BTCMs and SLBTCMSBm is LOW and AxADDRSm[3] is HIGH, 
the access goes to the B1TCM.

Table 9-26 TCM chip-select decode

AxCSELSm[3:0] BTCM ports SLBTCMSBm AxADDRSm[3] AxADDRSm[MSB] RAM selected

0001 - - - - ATCM

0010 1 - - - BTCM 

0010 2 0 0 - B0TCM 

0010 2 0 1 - B1TCM

0010 2 1 - 0 B0TCM

0010 2 1 - 1 B1TCM

Table 9-27 MSB bit for the different TCM RAM sizes

TCM size AxADDRSm[MSB]

4KB [11]

8KB [12]

16KB [13]

32KB [14]

64KB [15]

128KB [16]

256KB [17]

512KB [18]

1MB [19]

2MB [20]

4MB [21]

8MB [22]
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-26
ID092411 Non-Confidential



Level Two Interface 
An access to the TCM RAMs is given a SLVERR error response if:
• It is outside the physical size of the targeted TCM RAM, that is, bits of 

AxADDRSm[22:MSB+1] are non-zero.
• There is no TCM present. The mapping of bus addresses to AxCSELSm and 

AxADDRSm is determined when the processor is integrated. You must understand this 
mapping to use of the AXI-slave interface within your system.

9.6.2 Cache RAM access

This section contains the following:
• Memory map when accessing the cache RAMs
• D_Cache data RAM single bank accesses on page 9-31
• I_Cache Data RAM access on page 9-32
• D_Cache data RAM double bank accesses on page 9-32
• Tag RAM access on page 9-34
• Dirty RAM access on page 9-34.

Memory map when accessing the cache RAMs

The memory map is divided into 2 regions:
• RAM-Access region
• TRANSFER and AUX register access region

.

The TRANSFER register enables an AXI master to construct a single RAM access from 
multiple sub-word accesses, that might be required if the master data width is less than the RAM 
data width.

The AUX register provides access to Data RAM ECC and parity data, if implemented.

The RAM-Access region initiates all AXI-slave RAM accesses. Reads from this region return 
data and update the TRANSFER and AUX registers. Writes to this region combine with the data 
in the TRANSFER and AUX registers, before being committed to the RAM.

Table 9-28 on page 9-28 describes the RAM-Access memory map and Table 9-29 on page 9-29 
describes the TRANSFER and AUX memory map.

Any address that is not listed in Table 9-28 on page 9-28 or addresses that are explicitly listed 
as illegal returns a SLVERR.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-27
ID092411 Non-Confidential



Level Two Interface 
Any fields marked as RAZ/WI refer to the RAMs. The TRANSFER and AUX registers are not 
guaranteed to be RAZ/WI.

Table 9-28 RAM-Access space

AxADDRSm bits Description

[22:19] Block select:
0000 = single bank data RAM
0001 = tag RAM
0010 = dirty RAMa

0100 = double bank data RAMa

1000 = strobed double bank data RAMa.

[18:15] Bank select.
For D-Cache data RAMs:
• Single bank mode. Accesses a single RAM-word:

0001 = Bank 0 or 1
0010 = Bank 2 or 3
0100 = Bank 4 or 5
1000 = Bank 6 or 7
Bit [13] of the address determines which of the two banks is selected for each of these values.
0 = lower numbered bank
1 = higher numbered bank

• Double bank mode. Accesses 2 RAM-words from contiguous banks:
0001 = Bank 0 and 1
0010 = Bank 2 and 3
0100 = Bank 4 and 5
1000 = Bank 6 and 7

• Strobed double bank mode. Accesses 2 contiguous banks with byte-strobe support:
0001 = Bank 0 and 1
0010 = Bank 2 and 3
0100 = Bank 4 and 5
1000 = Bank 6 and 7
Strobes used to access the selected banks are derived directly from the WSTRB signals for the access to 
the RAM-Access space.

For I_Cache data RAMs:
0001 = Bank 0
0010 = Bank 1
0100 = Bank 2
1000 = Bank 3

For tagbc and dirtyad RAMs:[15] = Bank 0[16] = Bank 1[17] = Bank 2[18] = Bank 3.
For tag-RAM reads, only one-hot encodings are supported.
For tag-RAM writes, all combinations are supported, the same data is written to all banks.
For dirty RAM accesses, all combinations are supported.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-28
ID092411 Non-Confidential



Level Two Interface 
Only accesses to the RAM-Access space actually perform RAM accesses.

TRANSFER and AUX are intermediate registers that are used by the AXI slave logic to perform 
RAM accesses.

Note
 The physical integration of the RAMs limits the granularity of RAM accesses. This means that:

• A data chunk and its ECC or parity, if implemented, are always updated together.

[14] Indicates address space accessed:
0 = RAM-Access

[13:2] For D_Cache double-bank data RAM accesses:
[13:3] = RAM index
[2] = bank select

For D_Cache single-bank RAM accesses:
[13] = bank select
[12:2] = RAM index

For I_Cache data RAM accesses:
[13:3] = RAM index
[2] = word select

For all other accesses:[13:12] = 0x0[11:3] = RAM index
[2] = word select

[1:0] Byte select

a. D_Cache only.
b. For tag-RAM reads, only one-hot encodings are supported.
c. For tag-RAM writes, all combinations are supported. The same data is written to all banks.
d. For dirty RAM accesses, all combinations are supported.

Table 9-28 RAM-Access space (continued)

AxADDRSm bits Description

Table 9-29 TRANSFER/AUX space

AxADDRSm bits Description

[22:15] 0x0

[14] Indicates address space accessed:
1 = TRANSFER/AUX

[13:4] 0x0

[3] Register accessed:
0 = TRANSFER
1 = AUX

[2] Word select

[1:0] Byte select
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-29
ID092411 Non-Confidential



Level Two Interface 
• It is not possible to access part of a RAM-word unless the RAM-integration guidelines for 
the processor require that the RAM itself must support this feature.
This requirement exists only for the D_Cache data RAMs and dirty RAMs, that must be 
implemented by byte-writable RAMs. The AXI slave bus supports the full range of 
byte-write support to this RAM only.

Writes to the RAM-Access space update TRANSFER with the write data, then use this register, 
and possibly AUX, to write to the selected RAM.Reads from the RAM-Access space read the 
RAM contents into TRANSFER, and possibly AUX, and provide the requested portion of the 
read data from TRANSFER on the AXI interface.

To perform accesses outside these restrictions, you must perform a read-modify-write sequence.

You can also access the TRANSFER and AUX registers directly using the TRANSFER/AUX 
space. Such accesses do not actually perform RAM accesses. In this way RAM accesses are 
decoupled from AXI transactions, and a single RAM access can be decomposed into, or 
composed from, multiple AXI bus accesses. This enables, for example, a master capable only 
of sub-word accesses to get full access to the RAMs.

All accesses to the TRANSFER and AUX registers are cumulative. This means that data written 
to the TRANSFER and AUX registers, through direct AXI slave accesses, persists until it is 
overwritten. Reads from the cache RAMs, occurring as a side effect of AXI slave accesses to 
the RAM-Access space, also update these registers and overwrite any value previously written. 
This enables easier read-modify-write (RMW) operation by the master.

The TRANSFER register enables you to transfer data and ECC to the tag and dirty RAMs, and 
to transfer data to the data RAMs.

The AUX register is used only for transferring ECC to the data RAMs. If neither cache 
implements parity or ECC, direct accesses to the AUX register return a SLVERR.

For writes, you must ensure that all the data to be written to the selected RAM is initialized, 
either by prior accesses to TRANSFER/AUX, by the current access to RAM-Access or by a 
combination of both.

You can perform writes by a variety of sequences involving the RAM-Access space, and 
possibly also the TRANSFER/AUX space. For example, a write to a data RAM can be done by:

• Multiple writes to the TRANSFER register and AUX register, followed by a single write, 
with potentially zeroed byte strobes, at the appropriate address to the RAM-Access space

• A single write to the AUX register, if ECC is present, followed by a single write at the 
appropriate address to the RAM-Access space.

You can perform reads by a similarly varied number of sequences. For example, a read of a data 
RAM can be done by:

• A single 64-bit read of the RAM-Access space followed by a single 64-bit read of the 
AUX register

• A byte read of the RAM-Access space followed by several byte-reads to read the rest of 
the RAM data from the TRANSFER and AUX registers.

The format of the data, for reads and writes, depends on the RAM accessed and the error 
configuration of the RAM. These formats are described in the following tables. All writes must 
ensure that the write data is on the correct lane. Reads return data on the lanes described.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-30
ID092411 Non-Confidential



Level Two Interface 
D_Cache data RAM single bank accesses

This section applies when you are performing a single bank access.

The location from which data bits are read, or to which they are written, depends on bit [0] of 
the RAM index. ECC or parity bits are written to, or read from, the lower byte of the AUX 
register.

Table 9-36 on page 9-33 describes the format of the AUX register for D_Cache data RAM 
accesses, when ECC is configured.

Table 9-37 on page 9-33 describes the format of the AUX register for data RAM, D_Cache, 
when parity is configured.

Table 9-38 on page 9-33 describes the format of the AUX register for data RAM, D_Cache, 
when no error correction is configured.

RAM index[0] = 0

Writing The data bits used are the result of the lower word of TRANSFER multiplexed 
with the lower word of the data sent to the RAM-Access space. The values of 
WSTRB used for this AXI transaction determine which is multiplexed in:
WSTRB=0 

data is taken from TRANSFER
WSTRB=1 

data is taken from the data bus

Reading The data bits are written to the lower word of TRANSFER, and appear on the 
lower word of the AXI data bus.
The upper word of TRANSFER is set to zero.

Table 9-30 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:7] RAZ/WI

[6:0] ECC32[6:0] 

Table 9-31 Data RAM AUX format, D_Cache, with parity

Bit Description

[63:4] RAZ/WI

[3] parity for byte 3, data[31:24]

[2] parity for byte 2, data[23:16]

[1] parity for byte 1, data[15:8]

[0] parity for byte 0, data[7:0]

Table 9-32 Data RAM AUX format, D_Cache, with no error correction

Bit Description

[63:0] RAZ/WI
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-31
ID092411 Non-Confidential



Level Two Interface 
RAM index[0] = 1

Writing The data bits used are the result of the upper word of TRANSFER multiplexed 
with the upper word of the data sent to the RAM-Access space. The values of 
WSTRB used for this AXI transaction determine which is multiplexed in.

Reading The data bits are written to the upper word of TRANSFER, and appear on the 
upper word of the AXI data bus.

I_Cache Data RAM access

Table 9-33 describes the format of the AUX register for data RAM, I-cache, when ECC is 
configured.

Table 9-34 describes the format of the AUX register for data RAM, I-cache, when parity is 
configured.

Table 9-35 describes the format of the AUX register for data RAM, I-cache, when no error 
correction is configured.

D_Cache data RAM double bank accesses

This section applies when you are performing a normal, or strobed, double bank access.

Normal accesses read or write all bytes of the doubleword being transferred. Strobed accesse 
read or write only those bytes specified by the corresponding bit in WSTRB. See Table 9-7 on 
page 9-12

Table 9-33 Data RAM AUX format, I-cache, with ECC

Bit Description

[63:8] RAZ/WI

[7:0] ECC64[7:0] for double word, data[63:0]

Table 9-34 Data RAM AUX format, I-cache, with parity

Bit Description

[63:8] RAZ/WI

[7:0] Parity[7:0] for double word, data[63:0]

Table 9-35 Data RAM AUX format, I-cache, with ECC

Bit Description

[63:0] RAZ/WI
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-32
ID092411 Non-Confidential



Level Two Interface 
Table 9-36 describes the format of the AUX register for D_Cache data RAM accesses, when 
ECC is configured.

Table 9-37 describes the format of the AUX register for data RAM, D_Cache, when parity is 
configured.

Table 9-38 describes the format of the AUX register for data RAM, D_Cache, when no error 
correction is configured.

Table 9-36 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:15] RAZ/WI

[14:8] ECC32[6:0] for upper word, data[63:32]

[7] RAZ/WI

[6:0] ECC32[6:0] for lower word, data[31:0]

Table 9-37 Data RAM AUX format, D_Cache, with parity

Bit Description

[63:12] RAZ/WI

[11] parity for byte 3 of upper word, data[63:56]

[10] parity for byte 2 of upper word, data[55:48]

[9] parity for byte 1 of upper word, data[47:40]

[8] parity for byte 0 of upper word, data[39:32]

[7:4] RAZ/WI

[3] parity for byte 3 of lower word, data[31:24]

[2] parity for byte 2 of lower word, data[23:16]

[1] parity for byte 1 of lower word, data[15:8]

[0] parity for byte 0 of lower word, data[7:0]

Table 9-38 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:0] RAZ/WI
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-33
ID092411 Non-Confidential



Level Two Interface 
Tag RAM access

Table 9-39 describes the format of the TRANSFER register for tag RAM, when using ECC.

Table 9-40 describes the format of the TRANSFER register for tag RAM, when using parity.

Table 9-41 describes the format of the TRANSFER register for tag RAM, when no error 
correction is configured.

Dirty RAM access

Table 9-42 describes the format of the TRANSFER register for dirty RAM, when ECC is 
configured.

Table 9-39 Tag RAM TRANSFER ECC format

Bit Description

[63:30] RAZ/WI

[29:23] ECC32 – selected way

[22] Valid - selected way

[21:0] Tag - selected way

Table 9-40 Tag RAM TRANSFER parity format

Bit Description

[63:24] RAZ/WI

[23] Parity – selected way

[22] Valid - selected way

[21:0] Tag - selected way

Table 9-41 Tag RAM TRANSFER format, without error correction

Bit Description

[63:23] RAZ/WI

[22] Valid - selected way

[21:0] Tag - selected way

Table 9-42 Dirty RAM TRANSFER format, with ECC

Bit Description

[63:31] RAZ/WI

[30:27] ECC32 – way 3

[26:25] Outer attributes – way 3

[24] Dirty – way 3

[23] RAZ/WI
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-34
ID092411 Non-Confidential



Level Two Interface 
Table 9-43 describes the format of the TRANSFER register for dirty RAM, when parity, or no 
error correction, is configured.

[22:19] ECC32 – way 2

[18:17] Outer attributes – way 2

[16] Dirty – way 2

[15] RAZ/WI

[14:11] ECC32 – way 1

[10:9] Outer attributes – way 1

[8] Dirty – way 1Dirty – way 1

[7] RAZ/WI

[6:3] ECC32 – way 0

[2:1] Outer attributes – way 0

[0] Dirty – way 0

Table 9-43 Dirty RAM TRANSFER format, without ECC

Bit Description

[63:27] RAZ/WI

[26:25] Outer attributes – way 3

[24] Dirty – way 3

[23:19] RAZ/WI

[18:17] Outer attributes – way 2

[16] Dirty – way 2

[15:11] RAZ/WI

[10:9] Outer attributes – way 1

[8] Dirty – way 1Dirty – way 1

[7:3] RAZ/WI

[2:1] Outer attributes – way 0

[0] Dirty – way 0

Table 9-42 Dirty RAM TRANSFER format, with ECC (continued)

Bit Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-35
ID092411 Non-Confidential



Level Two Interface 
9.7 Peripheral interfaces
The processor has three peripheral interfaces. Accesses to the peripheral interfaces have lower 
latency, typically to half the latency of accesses to the AXI master interface. The port is used for:
• Device and Strongly-ordered type data accesses, normally to peripherals
• Normal-type memory low bandwidth data accesses, for example mailboxing.

The three peripheral interfaces use two physical ports, a 32-bit wide AXI master port that 
conforms to the AXI3 standard as described in the AMBA AXI Protocol Specification and an 
optional 32-bit wide AHB-Lite master port that conforms to the AHB-Lite standard as described 
in the AMBA AHB Protocol Specification.

The AXI peripheral port is sub-divided into: 
• a virtual interface, referred to as LLPP Virtual AXI or the virtual-AXI peripheral interface
• a non-virtual interface, referred to as LLPP Normal AXI or the AXI peripheral interface.

The LLPP Virtual AXI is independent of the LLPP Normal AXI and the LLPP AHB peripheral 
interface from an ordering point of view. Accesses to both the AXI peripheral interfaces use the 
same physical AXI port but have different AXI IDs.

The AXI peripheral port has an address buffer and a data buffer, each of which has three entries. 
Each entry in the address buffer holds 32 bits of address, and an entry in the data buffer holds 
32 bits of data. No merging is possible between the entries of a buffer. The LLPP Normal AXI 
and LLPP Virtual AXI share the address and data buffer.

The AHB peripheral port has its own address and data buffers. The address buffer has three 
entries and the data buffer has four entries. Each entry holds 32 bits. No merging is possible 
between the entries of a buffer.

The maximum number of outstanding write accesses that the processor posts onto the LLPP 
Virtual AXI is 3 and 15 for the LLPP Normal AXI.

AHB-Lite does not have the ability to do posted and out-of-order transactions, so the AHB 
peripheral port does not have a separate virtual interface.

Table 9-44 shows the AXI peripheral port attributes.

The peripheral ports can run at the same frequency as the processor or at a lower synchronous 
frequency. See AMBA interface clocking on page 2-16 for more information.

Table 9-44 AXI peripheral port attributes

Attribute Value Comments

Write issuing capability of LLPP Normal AXI 15 15 outstanding writes on (non-virtual) AXI peripheral interface

Write issuing capability of LLPP Virtual AXI 3 3 outstanding writes on virtual AXI peripheral interface

Read issuing capability 1 -

Combined issuing capability 19 Maximum number of posted writes on all AXI peripheral interfaces and a 
read

Write ID capability 2 -

Write interleave capability 1 The AXI peripheral port presents all write data in order

Read ID capability 2 -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-36
ID092411 Non-Confidential



Level Two Interface 
In addition, the peripheral ports produce or check parity bits for each AXI or AHB channel. 
These additional signals are not part of the AXI or AHB specification, though some make use 
of AXI extension signals. 

The following sections describe the attributes of the LLPP interfaces:
• Peripheral interface configuration
• Peripheral interface initialization on page 9-38
• Peripheral interface attributes and permissions on page 9-38
• Identifiers for AXI peripheral port accesses on page 9-38
• Write response on page 9-38
• Memory attributes on page 9-39
• AXI peripheral port transfers on page 9-39
• AHB peripheral port transfers on page 9-46
• Semaphores on page 9-52.

9.7.1 Peripheral interface configuration

The peripheral interfaces are configured during implementation and integration.

You can configure the AHB peripheral port to be removed, and not included in the processor 
design. The AXI peripheral port is always included and is not optional.

During implementation, you can configure the peripheral ports to use an error-correction 
scheme to detect and correct signals transferred using the peripheral port buses, see Bus ECC 
on page 9-2.

The size of each peripheral interface is configured during integration. The permissible LLPP 
Normal AXI, LLPP Virtual AXI, or AHB peripheral interface sizes are:
• 4 KB
• 8 KB
• 16 KB
• 32 KB
• 64 KB
• 128 KB
• 256 KB
• 512 KB
• 1 MB
• 2 MB
• 4 MB
• 8 MB
• 16 MB
• 32 MB
• 64 MB
• 128 MB
• 256 MB
• 512 MB
• 1 GB
• 2 GB
• 4 GB.

The LLPP Virtual AXI is either the same size as the LLPP Normal AXI or a sub-region of it.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-37
ID092411 Non-Confidential



Level Two Interface 
The size of the peripheral interfaces is visible to software in the Peripheral Port Region 
Registers.

9.7.2 Peripheral interface initialization

The LLPP Normal AXI and AHB peripheral interfaces, but not the LLPP Virtual AXI interface, 
can be enabled from reset by configuring the control pins. Peripheral interface region enables 
can also be programmed using the System Coprocessor Registers, see Peripheral interface 
region registers on page 4-84. Ensure that peripheral interface region programming is done 
when the MPU is disabled to prevent unpredictable behavior.

9.7.3 Peripheral interface attributes and permissions

Accesses to the peripheral interfaces from the LSU are checked against the MPU for access 
permission. Memory access attributes are exported on this interface. Access permissions for 
peripheral interface accesses are the same as the permission attributes that the MPU assigns to 
the same address. Instructions cannot be fetched from any of the peripheral interfaces, and 
therefore they behave as if they have the eXecute Never (XN) attribute, regardless of the MPU 
XN attribute. All instruction fetches from the peripheral interfaces generate a permission fault. 
See Chapter 7 Memory Protection Unit for more information about memory attributes, types, 
and permissions.

Note
 If a peripheral interface region overlaps with a TCM region then the TCM region gets more 
priority and the overlapping memory gets the attributes of the TCM region.

The L1 memory system cannot cache any peripheral interface access even if the access is to 
Normal memory with a Cacheable attribute. Load or store multiple instructions accessing the 
peripheral port are not performed as long bursts, and are not interruptible-restartable, even when 
they are in Normal memory. ARM recommends that you do not perform multiples to the 
peripheral interface regardless of the memory type, because this might impact the interrupt 
latency.

Any unaligned access to Device or Strongly Ordered memory generates an alignment fault and 
therefore does not cause any peripheral interface access. This means that the access examples 
given in this chapter never show unaligned accesses to Device or Strongly Ordered memory.

Also any shared exclusive double to the AXI peripheral port or any shared exclusive to the AHB 
peripheral port generates an abort and therefore does not cause an access. 

9.7.4 Identifiers for AXI peripheral port accesses

Accesses on the AXI peripheral port use ID values as follows:
• ID0 for a read or a write access to the LLPP Normal AXI interface
• ID1 for a read or a write access to the LLPP Virtual AXI interface

9.7.5 Write response

The AXI peripheral port requires that the slave does not return a write response until it has 
received both the write data and the write address.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-38
ID092411 Non-Confidential



Level Two Interface 
9.7.6 Memory attributes

The AXI peripheral port uses the ARCACHEPm and AWCACHEPm signals to indicate the 
memory attributes of the transfer, as returned by the MPU. Table 9-45 shows the encoding used 
for the ARCACHEPm and AWCACHEPm signals of the master interface. These are 
generated from the memory type and outer region attributes.

9.7.7 AXI peripheral port transfers

The processor conforms to the AXI3 specification, but it does not generate all the AXI 
transaction types that the specification permits. This section describes the types of AXI 
transactions that the Cortex-R5 AXI peripheral port does not generate. If you are designing an 
AXI slave to work only with the Cortex-R5 processor AXI peripheral port, you can take 
advantage of these restrictions and the interface attributes to simplify the slave.

This section also contains tables that show some examples of the types of AXI burst that the 
processor generates. However, because a particular type of transaction is not shown here does 
not mean that the processor does not generate such a transaction.

Note
 An AXI slave device connected to the Cortex-R5 AXI master port must be capable of handling 
every kind of transaction permitted by the AXI specification, except where there is an explicit 
statement in this chapter that such a transaction is not generated. You must not infer any 
additional restrictions from the example tables given. 

Restrictions on AXI peripheral transfers on page 9-40 describes restrictions on the type of 
transfers that the Cortex-R5 AXI peripheral port generates. If a CPUm exists and is powered up, 
BREADYPm and RREADYPm are always asserted. They are, however, deasserted when the 
CPU enters Dormant or Shutdown mode. You must not make any assumptions about the AXI 
handshaking signals, except that they conform to the AMBA AXI3 Protocol Specification.

The following sections give examples of transfers generated by the LLPP AXI interface:
• Strongly Ordered and Device transactions on page 9-40 
• Normal reads on page 9-43 
• Normal Writes on page 9-45.

Table 9-45 ARCACHEPm and AWCACHEPm encodings

Encodinga

a. All encodings not shown in the table are reserved.

Meaning

b0000 Strongly Ordered

b0001 Device

b0011 Non-cacheable 

b0110 Cacheable, write-through, allocate on reads only

b0111 Cacheable, write-back, allocate on reads only

b1111 Cacheable write-back, allocate on reads and writes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-39
ID092411 Non-Confidential



Level Two Interface 
Restrictions on AXI peripheral transfers

The Cortex-R5 AXI peripheral port applies the following restrictions to the AXI transactions it 
generates:

• A burst never transfers more than eight bytes

• The burst length is never more than two transfers

• No transaction ever crosses a 8-byte boundary in memory

• All bursts are incrementing (INCR) bursts

• If the transfer size is 8-bits or 16-bits then the burst length is always one transfer

• The transfer size is never greater than 32 bits

• All transactions are non-secure data accesses

• Transactions to Device and Strongly Ordered memory are always to addresses that are 
aligned for the transfer size

• Exclusive and Locked accesses are always to addresses that are aligned for the transfer 
size

• Write data is never interleaved

• ID values can only be 0 or 1 indicating normal AXI or virtual AXI respectively.

Strongly Ordered and Device transactions

A load or store instruction to or from Strongly Ordered or Device memory always generates 
AXI transactions of the same size as the instruction implies. All accesses using LDM, STM, LDRD, 
or STRD instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-46 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm 
for LDRB from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-46 LDRB transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer

0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-40
ID092411 Non-Confidential



Level Two Interface 
LDRH

Table 9-47 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm 
for LDRH from halfwords 0-1 in Strongly Ordered or Device memory.

Note
 A load of a halfword from Strongly Ordered or Device memory addresses 0x1 or 0x3 generates 
an alignment fault.

LDR or LDM that transfer one register

Table 9-48 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm 
for an LDR or an LDM that transfers one register, an LDM1, in Strongly Ordered or Device memory.

Note
 A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates 
an alignment fault.

LDM that transfers five registers

Table 9-49 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm 
for an LDM that transfers five registers, an LDM5, in Strongly Ordered or Device memory.LDM 
transfers

Table 9-47 LDRH transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer

Table 9-48 LDR or LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer

Table 9-49 LDM transfers

Address[2:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (word 0) 0x00 Incr 32-bit 2 data transfers

0x08 Incr 32-bit 2 data transfers

0x10 Incr 32-bit 1 data transfer

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 2 data transfers

0x10 Incr 32-bit 2 data transfers
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-41
ID092411 Non-Confidential



Level Two Interface 
Note
 A load-multiple from memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment 
fault.

STRB

Table 9-50 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and 
AWLENPm for an STRB from bytes 0-3 in Strongly Ordered or Device memory.

STRH

Table 9-51 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and 
AWLENPm for an STRB from halfwords 0-1 in Strongly Ordered or Device memory.

Note
 A store of a halfword from Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7 
generates an alignment fault.

STR or STM of one register

Table 9-52 shows the values of AWADDRm, AWBURSTPm, AWSIZEPm, and AWLENPm 
for an STR or an STM that transfers one register, an STM1, to Strongly Ordered or Device memory.

Note
 A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates 
an alignment fault.

Table 9-50 STRB transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer b0001

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer b0010

0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer b0100

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer b1000

Table 9-51 STRH transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer b0011

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer b1100

Table 9-52 STR or STM transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer b1111
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-42
ID092411 Non-Confidential



Level Two Interface 
STM of five registers

Table 9-53 shows the values of AWADDRm, AWBURSTPm, AWSIZEPm, and AWLENPm 
for an STM that writes five registers, an STM5, over the AXI peripheral port to Strongly Ordered 
or Device memory.

Note
 A store-multiple to address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment fault.

Normal reads

Load instructions accessing Normal memory generate AXI peripheral port bursts that are 
always of 32-bit size and not necessarily the same size or length as the instruction implies. The 
tables in this section give examples of the types of AXI transaction that might result from 
various load instructions, accessing various addresses in Normal memory. They are provided as 
examples only, and are not an exhaustive description of the AXI transactions.

Table 9-54 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and 
ARLENPm for an LDRH from bytes 0-7 in Normal memory.

Table 9-53 STM transfers

Address[2:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x00 (word 0) 0x00 Incr 32-bit 2 data transfers b1111
b1111

0x08 Incr 32-bit 2 data transfers b1111
b1111

0x10 Incr 32-bit 1 data transfer b1111

0x04 (word 1) 0x04 Incr 32-bit 1 data transfer b1111

0x08 Incr 32-bit 2 data transfers b1111
b1111

0x10 Incr 32-bit 2 data transfers b1111
b1111

Table 9-54 LDRH transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer

0x2 (byte 2) 0x00 Incr 32-bit 1 data transfer

0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers

0x4 (byte 4) 0x04 Incr 32-bit 1 data transfer

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-43
ID092411 Non-Confidential



Level Two Interface 
Table 9-55 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and 
ARLENPm for an LDR or an LDM that transfers one register, an LDM1, to Normal memory.

Table 9-56 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and 
ARLENPm for an LDM that transfers five registers, an LDM5, to Normal memory.

0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer

0x7 (byte 7)a 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 1 data transfer

a. AXI peripheral port transactions do not cross a double word boundary.

Table 9-55 LDR or LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer

0x1 (byte 1) 0x00 Incr 32-bit 2 data transfers

0x2 (byte 2) 0x00 Incr 32-bit 2 data transfers

0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 1 data transfer

0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 1 data transfer

0x7 (byte 7) 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 1 data transfer

Table 9-56 LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (word 0) 0x00 Incr 32-bit 2 data transfers

0x08 Incr 32-bit 2 data transfers

0x10 Incr 32-bit 1 data transfer

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer

0x08 Incr 32-bit 2 data transfers

0x10 Incr 32-bit 2 data transfers

Table 9-54 LDRH transfers (continued)

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-44
ID092411 Non-Confidential



Level Two Interface 
Normal Writes

Store instructions accessing Normal memory generate AXI peripheral port bursts that are 
always of 32-bit size and not necessarily the same size or length as the instruction implies. The 
AXI peripheral port asserts byte-lane strobes, WSTRBPm[3:0], to ensure that only the bytes 
that were written by the instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from 
various store instructions, accessing various addresses in Normal memory. They are provided 
as examples only, and are not an exhaustive description of the AXI transactions.

Table 9-57 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and 
AWLENPm for an STRH to Normal memory.

Table 9-58 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and 
AWLENPm for an STR or an STM that transfers one register, an STM1, to Normal memory.

Table 9-57 STRH transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer b0011

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer b0110

0x2 (byte 2) 0x00 Incr 32-bit 1 data transfer b1100

0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers b1000
b0001

0x4 (byte 4) 0x04 Incr 32-bit 1 data transfer b0011

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer b0110

0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer b1100

0x7 (byte 7) 0x04 Incr 32-bit 1 data transfer b1000

0x08 Incr 32-bit 1 data transfer b0001

Table 9-58 STR or STM transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer b1111

0x1 (byte 1) 0x00 Incr 32-bit 2 data transfers b1110
b0001

0x2 (byte 2) 0x00 Incr 32-bit 2 data transfers b1100
b0011

0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers b1000
b0111

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer b1111

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer b1110

0x08 Incr 32-bit 1 data transfer b0001
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-45
ID092411 Non-Confidential



Level Two Interface 
9.7.8 AHB peripheral port transfers

The processor conforms to the AHB-Lite specification, but it does not generate all the AHB 
transaction types that the specification permits. This section describes the types of AHB 
transaction that the Cortex-R5 AHB peripheral port does not generate. If you are designing an 
AHB slave to work only with the Cortex-R5 processor AHB peripheral port, you can take 
advantage of these restrictions and the interface attributes described in previous sections to 
simplify the slave.

This section also contains tables that show some of the types of AHB burst that the processor 
generates. However, because a particular type of transaction is not shown here does not mean 
that the processor does not generate such a transaction.

Note
 An AHB slave device connected to the Cortex-R5 AHB master port must be capable of handling 
every kind of transaction permitted by the AHB specification, except where there is an explicit 
statement in this chapter that such a transaction is not generated. You must not infer any 
additional restrictions from the example tables given.

Restrictions on AHB peripheral port transfers describes restrictions on the type of transfers that 
the Cortex-R5 AHB peripheral port generates.

The following sections give examples of transfers generated by the AHB peripheral port:
• Strongly Ordered and Device transactions on page 9-47
• Normal reads on page 9-50
• Normal writes on page 9-51.

Restrictions on AHB peripheral port transfers

The Cortex-R5 AHB peripheral port applies the following restrictions to the AHB transactions 
it generates:

• A burst never transfers more than eight bytes.

• The burst length is never more than two transfers.

• No transaction ever crosses a 8-byte boundary in memory

• All bursts are either single or 1-beat incrementing bursts, that is, HBURSTPm[2:0] is 
either SINGLE or INCR.

• The transfer type, that is, HTRANSPm[2:0] is never BUSY.

• The transfer size is never greater than 32 bits because it is a 32-bit AHB bus.

• If the transfer size is 8 bits or 16 bits then the burst length is always one transfer.

0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer b1100

0x08 Incr 32-bit 1 data transfer b0011

0x7 (byte 7) 0x04 Incr 32-bit 1 data transfer b1000

0x08 Incr 32-bit 1 data transfer b0111

Table 9-58 STR or STM transfers (continued)

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-46
ID092411 Non-Confidential



Level Two Interface 
• All transactions are data accesses, that is HPROTPm[0] is always 1.

• Transactions to Device and Strongly Ordered memory are always to addresses that are 
aligned for the transfer size.

• Locked accesses are always to addresses that are aligned for the transfer size.

Strongly Ordered and Device transactions

A load or store instruction, to or from Strongly Ordered or Device memory, always generates 
AHB transactions of the size implied by the instruction. All accesses using LDM, STM, LDRD or STRD 
instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-59 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an LDRB 
from bytes 0-3 in Strongly Ordered or Device memory.

LDRH

Table 9-60 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an LDRH 
from halfwords 0-1 in Strongly Ordered or Device memory.

Note
 A load of a halfword from Strongly Ordered or Device memory addresses 0x1 or 0x3 generates 
an alignment fault.

LDR or LDM of one register

Table 9-61 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an LDR or 
an LDM that transfers one register, an LDM1, in Strongly Ordered or Device memory.

Table 9-59 LDRB transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 8-bit

0x1 (byte 1) 0x01 Single 8-bit

0x2 (byte 2) 0x02 Single 8-bit

0x3 (byte 3) 0x03 Single 8-bit

Table 9-60 LDRH transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (halfword 0) 0x00 Single 16-bit

0x2 (halfword 1) 0x02 Single 16-bit

Table 9-61 LDR or LDM of one register

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00 Single 32-bit
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-47
ID092411 Non-Confidential



Level Two Interface 
Note
 A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x02, 0x3, 0x5, 0x06, 
or 0x7 generates an alignment fault.

LDM that transfers five registers

Table 9-62 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an LDM that 
transfers five registers, an LDM5, in Strongly Ordered or Device memory.

Note
 A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates 
an alignment fault.

STRB

Table 9-63 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an STRB 
from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-62 LDM that transfers five registers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00

0x04

Incr 32-bit

0x08

0x0C

Incr 32-bit

0x10 Single 32-bit

0x4 (word 1) 0x04 Single 32-bit

0x08

0x0C

Incr 32-bit

0x10

0x14

Incr 32-bit

Table 9-63 STRB transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 8-bit

0x1 (byte 1) 0x01 Single 8-bit

0x2 (byte 2) 0x02 Single 8-bit

0x3 (byte 3) 0x03 Single 8-bit
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-48
ID092411 Non-Confidential



Level Two Interface 
STRH

Table 9-60 on page 9-47 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm 
for an STRH from halfwords 0-1 in Strongly Ordered or Device memory.

Note
 A store of a halfword to Strongly Ordered or Device memory addresses 0x1 or 0x3 generates an 
alignment fault.

STR of one register

Table 9-65 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an STR that 
transfers one register, an STR1, in Strongly Ordered or Device memory.

Note
 A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates 
an alignment fault.

STM of five registers

Table 9-66 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an STM that 
transfers five registers, an STM5, over the AHB master port to Strongly Ordered or Device 
memory.

Table 9-64 STRH transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (halfword 0) 0x00 Single 16-bit

0x2 (halfword 1) 0x02 Single 16-bit

Table 9-65 STR of one register

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00 Single 32-bit

Table 9-66 STM of five registers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00

0x04

Incr 32-bit

0x08

0x0C

Incr 32-bit

0x10 Single 32-bit

0x4 (word 1) 0x04 Single 32-bit

0x08

0x0C

Incr 32-bit

0x10

0x14

Incr 32-bit
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-49
ID092411 Non-Confidential



Level Two Interface 
Note
 A store of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 
0x7 generates an alignment fault.

Normal reads

Load instructions accessing Normal memory generate AHB peripheral port bursts that might not 
be the same size or length as the instruction implies. The tables in this section give examples of 
AHB transactions that might result from various load instructions, accessing various addresses 
in Normal memory. They are examples only, and are not an exhaustive description of the AHB 
transactions.

LDRH

Table 9-67 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an 
LDRH from bytes 0 to 7 in Normal memory.

LDR

Table 9-68 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an 
LDR from Normal memory.

Table 9-67 LDRH transfers in Normal memory

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 16-bit

0x1 (byte 1) 0x01 Single 8-bit

0x02 Single 8-bit

0x2 (byte 2) 0x02 Single 16-bit

0x3 (byte 3) 0x03 Single 8-bit

0x04 Single 8-bit

0x4 (byte 4) 0x04 Single 16-bit

0x5 (byte 5) 0x05 Single 8-bit

0x06 Single 8-bit

0x6 (byte 6) 0x06 Single 16-bit

0x7 (byte 7)a

a. AHB peripheral port transactions do not cross a double word boundary.

0x07 Single 8-bit

0x08 Single 8-bit

Table 9-68 LDR transfers in Normal memory

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0, word 0) 0x00 Single 32-bit
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-50
ID092411 Non-Confidential



Level Two Interface 
Normal writes

Store instructions accessing Normal memory generate AHB peripheral port bursts that might 
not be the same size or length as the instruction implies. The tables in this section give examples 
of AHB transactions that might result from various store instructions, accessing various 
addresses in Normal memory. They are examples only, and are not an exhaustive description of 
the AHB transactions.

STRH

Table 9-69 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an 
STRH from bytes 0 to 3 in Normal memory.

STR or STM of one register

Table 9-70 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an 
STR to Normal memory.

0x1 (byte 1) 0x01 Single 8-bit

0x02 Single 16-bit

0x04 Single 8-bit

0x2 (byte 2) 0x02 Single 16-bit

0x04 Single 16-bit

0x3 (byte 3) 0x03 Single 8-bit

0x04 Single 16-bit

0x06 Single 8-bit

Table 9-69 STRH transfers in Normal memory

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 16-bit

0x1 (byte 1) 0x01 Single 8-bit

0x02 Single 8-bit

0x2 (byte 2) 0x02 Single 16-bit

0x3 (byte 3) 0x03 Single 8-bit

0x04 Single 8-bit

Table 9-70 STR transfers in Normal memory

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0, word 0) 0x00 Single 32-bit

Table 9-68 LDR transfers in Normal memory (continued)

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-51
ID092411 Non-Confidential



Level Two Interface 
9.7.9 Semaphores

The peripheral interfaces use the internal exclusive monitor of the processor L1 memory system 
to manage load, store and clear exclusive instructions to non-shared memory. The internal 
monitor checks exclusive accesses to shared memory and also, if necessary, any external 
monitor using the L2 memory interface. You can use these instructions to construct semaphores 
and ensure synchronization between different processes or processors. See the ARM 
Architecture Reference Manual for more information about how these instructions work.

Only exclusive instructions to shared memory result in exclusive accesses on the bus. Exclusive 
accesses to non-shared memory are marked as non-exclusive accesses on the bus.

Exclusive doubles to shared memory on LLPP Normal AXI or LLPP Virtual AXI (LDREXD and 
STREXD) are aborted. The AHB peripheral port cannot perform any exclusive accesses, so all 
exclusive accesses to shared memory on the AHB peripheral interface are aborted. The source 
of an abort because of a shared exclusive double to LLPP Normal AXI or LLPP Virtual AXI, or 
a shared exclusive to the AHB peripheral interface is encoded in the Data Fault Status Register 
(DFSR) as a Synchronous External AXI Slave Error.

The SWP and SWPB instructions can also be used for memory synchronization. Only swap 
instructions to shared memory are marked as locked accesses on the bus.

0x1 (byte 1) 0x01 Single 8-bit

0x02 Single 16-bit

0x04 Single 8-bit

0x2 (byte 2) 0x02 Single 16-bit

0x04 Single 16-bit

0x3 (byte 3) 0x03 Single 8-bit

0x04 Single 16-bit

0x06 Single 8-bit

Table 9-70 STR transfers in Normal memory (continued)

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-52
ID092411 Non-Confidential



Level Two Interface 
9.8 Accelerator Coherency Port interface
The optional Accelerator Coherency Port (ACP) provides memory coherency as introduced in 
Coherency on page 3-6 between each CPU in the Cortex-R5 group and an external master.

The ACP has an AXI slave interface and an AXI master interface:
• the ACP slave interface has one port with only the AW and B channels
• the ACP master interface has one port with only the AW and B channels.

Each port is 64 bits wide, and conforms to the AMBA 3 AXI standard as described in the AMBA 
AXI Protocol Specification.

Within the AXI standard, the ACP slave port uses a number of extension signals to:
• indicate if coherency must be preserved
• give information about coherency maintenance operations
• carry parity information for the bus-ECC feature, if included.

Within the AXI standard, the ACP master port uses a number of extension signals to:
• indicate if coherency must be preserved
• carry parity information for the bus-ECC feature, if included.

See Bus ECC on page 9-2 for more information on parity checking and generation in the ACP.

The ACP ports can run at the same frequency as the processor or at a lower synchronous 
frequency. See Clocking on page 2-16 for more information.

The Cortex-R5 ACP memory coherency scheme only provides coherency between an external 
master connected to the ACP slave port and a CPU with a data cache in the Cortex-R5 group for 
memory regions configured as inner cacheable write-through in the CPU’s MPU. It does not 
provide coherency for memory regions configured as cacheable write-back.

Note
 In a twin-CPU configuration, the ACP maintains memory coherency between the external 
master and each CPU with a data cache in the Cortex-R5 group, but not between the external 
master and a CPU without a data cache, or between the two CPUs.

For AXI write transactions going through the ACP and marked as coherent, AW channel 
sideband signal AWCOHERENTCS high, the ACP ensures that there is no cached copy of the 
data at these addresses in the CPU’s data cache when the AXI write completes.

When an AXI write from the external master appears on the ACP slave port’s AW channel, the 
ACP records some information about it and forwards the write transaction to the memory 
system on the ACP master port’s AW channel.

When the memory system sends the write response on the ACP master port’s B channel, the 
ACP records the response and recalls if the transaction was coherent.

If the transaction is not coherent, the ACP forwards the response to the external master on the 
ACP slave port’s B channel.

If the transaction is coherent, the ACP first sends coherency maintenance operations to the 
CPU’s data cache controller for the addresses spanned by the write transaction, and waits until 
the cache controller has acknowledged that all necessary coherency maintenance operations 
have been carried out to forward the write response to the ACP slave port’s B channel, along 
with information about the maintenance operations.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-53
ID092411 Non-Confidential



Level Two Interface 
Coherency maintenance operations invalidate cache lines when a CPU’s data cache holds a copy 
of data at an address spanned by a coherent external write transaction. However if this cache 
line is dirty, it is not invalidated and the ACP indicates along with the write response that 
coherency was not maintained for this transaction.

For each CPU, information on the coherency maintenance operations includes:

• If all addresses were not cached, sideband signal BMISSCSm

• If at least one address was cached and potentially dirty in which case coherency has not 
been maintained, sideband signal BHITDIRTYCSm.

If a transaction is not coherent, the ACP always indicates that all addresses were not cached and 
never indicates that at least one address was cached and potentially dirty.

If a CPU’s data cache controller cannot process coherency maintenance requests, because, for 
example, it is powered down, the ACP always indicates that all addresses were not cached and 
indicates that at least one address was cached and potentially dirty, only if coherency was not 
maintained for the write transaction.

Note
 • The ACP does not reorder transactions: 

— write address transactions appear on the ACP master port AW channel in the same 
order as they appeared on the ACP slave port AW channel

— responses appear on the ACP slave port B channel in the same order as they 
appeared on the ACP master port B channel.

• The ACP master port requires that the slave it connects to does not return a write response 
until it has received both the write data and the write address.

• You must not use the ACP at the same time as the AXI slave is accessing the cache RAMs. 
If you use the AXI slave to access the cache RAMs, ensure that it is idle before initiating 
ACP transactions.

The ACP slave interface attributes are described in Table 9-71.

The ACP master interface attributes are described in Table 9-72.

Table 9-71 ACP slave interface attributes

Attribute Value

Write acceptance capability 4 

Write interleave depth 1 

Table 9-72 ACP master interface attributes

Attribute Value

Write issuing capability 2

Write ID capability 4

Write ID width 2
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 9-54
ID092411 Non-Confidential



Chapter 10 
Power Control

This chapter describes the processor power control functions. It contains the following sections:
• About power control on page 10-2
• Power management on page 10-3.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 10-1
ID092411 Non-Confidential



Power Control 
10.1 About power control
The features of the processor that improve energy efficiency include:

• branch and return prediction, reducing the number of incorrect instruction fetch and 
decode operations

• the caches use sequential access information to reduce the number of accesses to the tag 
RAMs and to unwanted data RAMs.

In the processor, extensive use is also made of gated clocks and gates to disable inputs to unused 
functional blocks. Only the logic actively in use to perform a calculation consumes any dynamic 
power. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 10-2
ID092411 Non-Confidential



Power Control 
10.2 Power management
Each CPU in the Cortex-R5 processor supports four different power modes from Run to 
Shutdown, with decreasing levels of power consumption, but increasing entry and exit costs. 
The modes are summarized in the following table. 

If the processor is implemented with twin CPUs, then each CPU can be in a mode independent 
of the other, provided CPU1 is never in a higher power mode than CPU0 when CPU0 is in 
Dormant or Shutdown mode. Regardless of the state of the CPUs, the logic for the ACP 
interfaces and the debug-APB interfaces remain powered up.

A CPU can only enter Dormant or Shutdown modes if it is implemented with the appropriate 
power gating circuitry and clamp logic, and is integrated into a system with a power controller.

This section describes:
• Run mode
• Standby mode
• Dormant mode on page 10-4
• Shutdown mode on page 10-4
• Power Management Controller on page 10-5
• Power mode interaction with ACP on page 10-5
• Power mode interaction with debug on page 10-5.

10.2.1 Run mode

Run mode is the normal mode of operation where all of the functionality of the CPU is available. 

10.2.2 Standby mode

Standby mode enables most of the clocks of the device to be disabled, while keeping the design 
powered up. This reduces the power drawn to the static leakage current, plus a tiny clock power 
overhead required to enable the device to wake up from the Standby mode. 

Entry into Standby mode is performed by executing the Wait For Interrupt (WFI) instruction or 
Wait For Event (WFE) instruction. To ensure that the entry into the Standby mode does not affect 
the memory system on a Cortex-R5 CPU, the WFI and WFE instructions automatically performs a 
Data Synchronization Barrier operation. This ensures that all explicit memory accesses occur 
before the WFI or WFE has completed. When this has happened, the CPU stops fetching 
instructions and asserts nWFIPIPESTOPPEDm or nWFEPIPESTOPPEDm as appropriate, 
to indicate that it is in Standby mode.

Table 10-1 Power management modes

Mode CPU clock
gated

CPU logic
powered

CPU RAMs
powered Exit to Run mode requires

Run No Yes Yes -

Standby When idle Yes Yes Pipeline restart 

Dormant Yes No Yes Pipeline restart
Restore registers and configuration from memory

Shutdown Yes No No Pipeline restart
Restore registers and configuration from memory
Invalidate caches and reinitialize caches and TCMs
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 10-3
ID092411 Non-Confidential



Power Control 
When the CPU is in Standby mode and it has no outstanding AXI-slave or debug-APB 
transactions or ACP invalidate requests, then it stops the clock to the majority of its logic. When 
the CPU clocks are stopped the nCLKSTOPPEDm signal is asserted. If the 
DBGNOCLKSTOP input is asserted, the CPU does not stop its clocks or assert 
nCLKSTOPPEDm when in Standby mode. 

When the processor is in Standby mode and the AXI slave interface or debug-APB interface 
receives a transaction or an ACP invalidate request is generated, the processor clocks are 
temporarily restarted and nCLKSTOPPEDm is deasserted to enable it to service the 
transaction, but it does not return to Run mode.

The CPU exits Standby mode and returns to Run mode in response to a variety of events, 
depending on whether Standby mode was entered using WFI or WFE.

For WFI, the transition from Standby mode to Run mode is caused by:
• the arrival of an interrupt, whether masked or unmasked
• a debug request, whether debug is enabled or disabled
• a reset.

For WFE, the transition from Standby mode to Run mode is caused by:
• the arrival of an unmasked interrupt
• a debug request, whether debug is enabled or disabled
• an event signalled on the EVENTIm input
• a reset.

The debug request can be generated by an externally generated debug request, using the 
EDBGRQm pin on the processor, or from a Debug Halt instruction issued to the processor 
through the debug Advanced Peripheral Bus (APB).

Systems using the VIC interface must ensure that the VIC is not masking any interrupts that are 
required for restarting the processor when in standby mode.

10.2.3 Dormant mode

In Dormant mode, only the CPU logic, but not the CPU TCM and cache RAMs, is powered 
down, so that the only power consumption is the static leakage current of the RAMs. 

Before entering Dormant mode, you must save the CPU state, except for the cache and TCM 
state, in memory. When power is restored to the CPU logic, the CPU is returned to Run mode 
by asserting and deasserting nRESETm. You must restore the CPU state as part of the boot 
process. Because the cache and TCM are not powered down in Dormant mode, you do not have 
to invalidate or initiate them during boot, and the task can access data in the cache without 
requiring a cache refill. In Dormant mode, the CPU state, apart from the cache and TCM state, 
is stored to memory before entry into this mode, and restored after exit. For more information 
on how to implement and use Dormant mode in your design, contact ARM.

10.2.4 Shutdown mode

In Shutdown mode, the entire CPU is powered down, so that it consumes no power. Before 
entering Shutdown mode, you must save all the processor state, including any required cache 
and TCM state in the level-2 memory. This typically includes cleaning the whole data cache. 
When it is powered up, the CPU is returned to Run mode by asserting and deasserting 
nRESETm. As part of the boot process, you must:
• restore the CPU state if required
• invalidate the caches
• initialize the TCMs as part of the boot process.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 10-4
ID092411 Non-Confidential



Power Control 
10.2.5 Power Management Controller

You can only put the CPU into Dormant mode or Shutdown mode if it is integrated into a system 
with a memory-mapped Power Management Controller (PMXEVCNTR). The PMXEVCNTR 
must respond to software running on the CPU to power down the appropriate logic at the right 
time. The PMXEVCNTR must also respond to stimulus from the system, to power up the CPU 
logic and return it to Run mode.

Both Standby mode and Dormant mode are entered through Standby mode. You must program 
the PMXEVCNTR to indicate which mode you want to enter, then perform the appropriate 
state-saving operations. After this is done, execute WFI or WFE to enter Standby mode. 

When the CPU is in Standby mode, nWFIPIPESTOPPEDm or nWFEPIPESTOPPEDm is 
asserted to indicate that the CPU pipeline has quiesced. The PMXEVCNTR must also ensure 
that the system provides no stimulus to the CPU so that the whole CPU is quiesced. For 
example, no new transactions to the Cortex-R5 AXI-slave interface can be started, and all 
outstanding transactions must be completed. Only when the CPU is completely quiesced can the 
PMXEVCNTR remove power from the logic. If the system provides stimulus, for example an 
interrupt to the CPU, after it has entered Standby mode, the CPU might have started to exit 
Standby mode when the power is removed, that can lead to corruption of the system.

10.2.6 Power mode interaction with ACP

When a CPU is in Standby mode, and a transaction that requires coherency is received by the 
ACP, the clock for the CPU is restarted, if required, so that coherency maintenance operations 
can be handled as normal. When the ACP is idle again the clock is gated off again, if 
appropriate,

When a CPU is in Dormant mode, then its cache contents are live, but it cannot respond to 
coherency maintenance operations that the ACP generates. For this CPU, for ACP transactions 
requiring coherency, the coherency maintenance operations information signals indicate that all 
addresses were not cached, that is, BMISSCS[m] is asserted, and indicate that at least one 
address was cached and potentially dirty, BHITDIRTYCS[m]. Because this is usually 
considered erroneous, ARM recommends that the system is built so that transactions requiring 
coherency cannot be received by the processor, when one or both of the CPUs are in Dormant 
mode.

When a CPU is in Shutdown mode, its cache contents are lost and therefore there are no 
coherency issues with that cache. For this CPU, the coherency maintenance operations 
information signals indicate that all addresses were not cached, that is, BMISSCS[m] is 
asserted, and do not indicate that at least one address was cached and potentially dirty, that is, 
BHITDIRTYCS[m] is not asserted.

See Accelerator Coherency Port interface on page 9-53 for more information about the ACP.

10.2.7 Power mode interaction with debug

When one of the Cortex-R5 CPUs is in Standby mode and a debug-APB access to one of the 
core registers is received, the clocks for the CPU are restarted, if required, so that the transaction 
can be serviced as normal. When the transaction is complete, the clock is, gated off again if 
appropriate.

When a CPU is in Shutdown mode or Dormant mode, the core debug registers, for example. 
DBGDSCR, are unavailable and an error response is signalled for transactions to these registers. 
The debug-APB interface and the debug domain registers, for example DIDR, remain available 
as normal. The power-down status is indicated by the DBGPRSR. See Device Power-down and 
Reset Status Register on page 12-32.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 10-5
ID092411 Non-Confidential



Chapter 11 
FPU Programmers Model

This chapter describes the programmers model of the Floating Point Unit (FPU). It contains the 
following sections:
• About the FPU programmers model on page 11-2
• General-purpose registers on page 11-4
• System registers on page 11-5
• Modes of operation on page 11-12
• Compliance with the IEEE 754 standard on page 11-13.

The Cortex-R5F processor is a Cortex-R5 processor that includes the optional FPU. In this 
chapter, the generic term processor means only the Cortex-R5F processor.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-1
ID092411 Non-Confidential



FPU Programmers Model 
11.1 About the FPU programmers model
The FPU implements the VFPv3-D16 architecture and the Common VFP Sub-Architecture v2. 
This includes the instruction set of the VFPv3 architecture. See the ARM Architecture Reference 
Manual for information on the VFPv3 instruction set. 

11.1.1 FPU functionality

The FPU is an implementation of the ARM Vector Floating Point v3 architecture, with 16 
double-precision registers (VFPv3-D16). It provides floating-point computation functionality 
that is compliant with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point 
Arithmetic, referred to as the IEEE 754 standard. The FPU supports all data-processing 
instructions and data types in the VFPv3 architecture as described in the ARM Architecture 
Reference Manual.

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide, 
multiply and accumulate, and square root operations. It also provides conversions between 
fixed-point and floating-point data formats, and floating-point constant instructions. The FPU 
does not support any data processing operations on vectors in hardware. Any data processing 
instruction that operates on a vector generates an Undefined Instruction exception. The 
operation can then be emulated in software if necessary.

Optionally, you can configure the FPU to support single-precision only. 

Cortex-R5F does not implement either the half-precision conversion or fused-MAC extensions 
to the VFPv3 architecture.

11.1.2 About the VFPv3-D16 architecture

The VFPv3-D16 architecture only includes 16 double-precision registers. VFPv3 includes 32 
double-precision registers by default. An instruction that attempts to access any of the registers 
D16-D31 generates an Undefined Instruction exception.

11.1.3 VFP instructions in a single-precision configuration

Table 11-1 lists the VFP instructions that are Undefined in a single-precision only configuration. 
These instructions are <opcode>.<cond>.F64 where opcode is listed in the table:

Table 11-1 Instructions undefined in a single-precision only configuration

Instruction Operation Opcodes

Vector Multiply Accumulate or Subtract VMLA, VMLS

Vector Negate Multiply Accumulate or Subtract VNMLA, VNMLS, VNMUL

Vector Multiply VMUL

Vector Add VADD

Vector Subtract VSUB

Vector Divide VDIV

Vector Move VMOV (immediate), VMOV (register)

Vector Absolute VABS

Vector Negate VNEG
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-2
ID092411 Non-Confidential



FPU Programmers Model 
Note
 The single-precision variants of these instructions (<opcode>.<cond>.F32) execute as normal.

Vector Square Root VSQRT

Vector Compare VCMP, VCMPE

Vector Convert VCVT, VCVTR (all supported variants)

Table 11-1 Instructions undefined in a single-precision only configuration (continued)

Instruction Operation Opcodes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-3
ID092411 Non-Confidential



FPU Programmers Model 
11.2 General-purpose registers
The FPU implements a VFP register bank. This bank is distinct from the ARM register bank.

You can reference the VFP register bank using two explicitly aliased views. Figure 11-1 shows 
the two views of the register bank and the way the word and doubleword registers overlap.

11.2.1 FPU views of the register bank

In the FPU, you can view the register bank as:
• Sixteen 64-bit doubleword registers, D0-D15.
• Thirty-two 32-bit single-word registers, S0-S31.
• A combination of registers from these views.

Figure 11-1 FPU register bank

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
• S<2n+1> maps to the most significant half of D<n>.

For example, you can access the least significant half of the value in D6 by accessing S12, and 
the most significant half of the elements by accessing S13.

...

D0

D1

D2

D3

D14

D15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

...
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-4
ID092411 Non-Confidential



FPU Programmers Model 
11.3 System registers
The VFPv3 architecture describes the following system registers:
• Floating-Point System ID Register on page 11-6
• Floating-Point Status and Control Register on page 11-7
• Floating-Point Exception Register, FPEXC on page 11-9
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 11-9.

Table 11-2 shows the VFP system registers in the Cortex-R5F FPU. 

Note
 The FPSID, MVFR0, and MVFR1 Registers are read-only. Attempts to write these registers are 
ignored.

Table 11-3 shows that a Privileged mode is sometimes required to access a VFP system register. 
When a Privileged mode is required, an instruction that attempts to access a register in a 
nonprivileged mode takes the Undefined Instruction exception.

For a VFP system register to be accessible, it must follow the rules in Table 11-3 and the VFP 
must also be accessible according to the CPACR. See c1, Coprocessor Access Control Register 
on page 4-47 for more information.

Table 11-2 VFP system registers

Register VMRS/VMSR <reg> field Access type Reset state

Floating-Point System ID Register, FPSID b0000 Read-only 0x4102315xa

Floating-Point Status and Control Register, FPSCR b0001 Read/write 0x00000000

Floating-Point Exception Register, FPEXC b1000 Read/write 0x00000000

VFP Feature Register 0, MVFR0 b0111 Read-only 0x10110221

VFP Feature Register 1, MVFR1 b0110 Read-only 0x00000011

a. Bits [3:0] of the FPSID depend on the product revision. See the FPSID register description for more information.

Table 11-3 Accessing VFP system registers

Register

Privileged access User access

FPEXC EN=0 FPEXC EN=1 FPEXC EN=0 FPEXC EN=1

FPSID Permitted Permitted Not permitted Not permitted

FPSCR Not permitted Permitted Not permitted Permitted

MVFR0, MVFR1 Permitted Permitted Not permitted Not permitted

FPEXC Permitted Permitted Not permitted Not permitted
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-5
ID092411 Non-Confidential



FPU Programmers Model 
Note
 All hardware ID information is privileged access only:

FPSID is privileged access only 
This is a change in VFPv3 compared to VFPv2.

MVFR registers are privileged access only 
User code must issue a system call to determine the features that are supported.

The following sections describe the VFP system registers:
• Floating-Point System ID Register
• Floating-Point Status and Control Register on page 11-7
• Floating-Point Exception Register, FPEXC on page 11-9
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 11-9.

11.3.1 Floating-Point System ID Register

The FPSID Register characteristics are:

Purpose Indicates which VFP implementation is being used.

Usage constraints The FPSID Register:
• is a read-only register
• must be accessed in Privileged mode only.

Configurations Use this register if the device is configured as a Cortex-R5F processor.

Attributes See Table 11-4.

Figure 11-2 shows the bit assignments.

Figure 11-2 FPSID Register bit assignments

Table 11-4 shows the bit assignments.

HW

Sub architecture Variant Revision

4

Implementer Part number

31 24 23 22 16 15 8 7 4 3 0

Table 11-4 FPSID Register bit assignments

Bits Name Function

[31:24] Implementer ARM Limited:
0x41 = A

[23] Hardware or software 0 = hardware implementation

[22:16] Subarchitecture version VFP architecture v3 or later with Common VFP subarchitecture v2a:
0x02
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-6
ID092411 Non-Confidential



FPU Programmers Model 
11.3.2 Floating-Point Status and Control Register

The FPSCR Register characteristics are:

Purpose Provides all necessary User level control of the floating-point system.

Usage constraints All bits described as DNM in Figure 11-3 are reserved for future 
expansion. These bits must be initialized to zeros. To ensure that these bits 
are not modified, any code other than initialization code must use 
read-modify-write techniques when writing to FPSCR. Failure to observe 
this rule can cause Unpredictable results in future systems.

Configurations Use this register if the device is configured as a Cortex-R5F processor.

Attributes See Table 11-5 on page 11-8.

Figure 11-3 shows the bit assignments.

Figure 11-3 FPSCR Register bit assignments

[15:8] Part number 0x31 = Cortex-R5F processor

[7:4] Variant 0x5 = Cortex-R5F processor

[3:0] Revision When the build-configuration includes the floating point unit, this register identifies the revision 
number of the floating-point unit:
0x0 = r0p0
0x1 = r1p0
0x2 = r1p1
0x3 = r1p2

a. For more information about the Common VFP subarchitecture see the ARM Architecture Reference Manual.

Table 11-4 FPSID Register bit assignments (continued)

Bits Name Function

IXC

IDC

DNM

DZE

IOE

UFE

OFE

DNM

IXE

IDE

LEN

AHP

N Z C V

UFC

OFC

DZC

IOC

QC

RMODE

STRIDE

DN

FZ

DNM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-7
ID092411 Non-Confidential



FPU Programmers Model 
Table 11-5 shows the bit assignments.

Table 11-5 FPSCR Register bit assignments

Bits Name Function

[31] N Set if comparison produces a less than result, resets to zero

[30] Z Set if comparison produces an equal result, resets to zero

[29] C Set if comparison produces an equal, greater than, or unordered result, resets to zero

[28] V Set if comparison produces an unordered result, resets to zero

[27] QC Do Not Modify (DNM)/Read As Zero (RAZ)

[26] AHP DNM/RAZ

[25] DN Default NaN mode enable bit:
0 = default NaN mode disabled, this is the reset value
1 = default NaN mode enabled.

[24] FZ Flush-to-zero mode enable bit:
0 = flush-to-zero mode disabled, this is the reset value
1 = flush-to-zero mode enabled.

[23:22] RMODE Rounding mode control field:
b00 = round to nearest (RN) mode, this is the reset value
b01 = round towards plus infinity (RP) mode
b10 = round towards minus infinity (RM) mode
b11 = round towards zero (RZ) mode.

[21:20] STRIDE Indicates the vector stride, reset value is 0x0

[19] - DNM

[18:16] LEN Indicates the vector length, reset value is 0x0

[15] IDE RAZ

[14:13] - DNM

[12] IXE RAZ

[11] UFE RAZ

[10] OFE RAZ

[9] DZE RAZ

[8] IOE RAZ

[7] IDC Input Subnormal cumulative flag, resets to zero

[6:5] - DNM

[4] IXC Inexact cumulative flag, resets to zero

[3] UFC Underflow cumulative flag, resets to zero

[2] OFC Overflow cumulative flag, resets to zero

[1] DZC Division by Zero cumulative flag, resets to zero

[0] IOC Invalid Operation cumulative flag, resets to zero
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-8
ID092411 Non-Confidential



FPU Programmers Model 
11.3.3 Floating-Point Exception Register, FPEXC

The FPEXC Register characteristics are:

Purpose Provides global enable and disable control of the VFP extension, and 
indicate how the state of this extension is recorded.

Usage constraints • The FPEXC Register is accessible in Privileged modes only.
• Clearing EN disables VFP functionality, causing all VFP 

instructions apart from privileged system register accesses to 
generate an Undefined Instruction exception. 

Configurations Use this register if the device is configured as a Cortex-R5F processor.

Attributes See Table 11-6.

Figure 11-4 shows the bit assignments.

Figure 11-4 FPEXC Register bit assignments

Table 11-6 shows the bit assignments.

11.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

The MVFR0 and MVFR1 Register characteristics are:

Purpose Describes the features supported by the FPU.

Usage constraints The MVFR0 and MVFR1 Registers:
• are read-only registers
• are accessible in Privileged modes only.
• ARM recommends that any software attempting to determine the 

presence or absence of double-precision floating point hardware 
support uses the MVFR1 register.

Reserved
EN

Reserved

31 30 29 0

DEX

28

Table 11-6 FPEXC Register bit assignments

Bits Name Function

[31] - RAZ.

[30] EN VFP enable bit. Setting EN enables VFP functionality. Reset clears EN.

[29] DEX Set when an Undefined Instruction exception is taken because of a vector instruction that would have been 
executed if the processor supported vectors. This field is cleared when an Undefined Instruction exception is 
taken for any other reason. Resets to zero.
In single-precision only configurations, this bit is not set for any double-precision operations, whether they are 
vector operations or not.

[28:0] - RAZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-9
ID092411 Non-Confidential



FPU Programmers Model 
Configurations Use this register if the device is configured as a Cortex-R5F processor.

Attributes See Table 11-7 and Table 11-8 on page 11-11.

Figure 11-5 shows the MVFR0 Register bit assignments.

Figure 11-5 MVFR0 Register bit assignments

Table 11-7 shows the MVFR0 Register bit assignments.

Figure 11-6 shows the MVFR1 Register bit assignments.

Figure 11-6 MVFR1 Register bit assignments

Table 11-8 on page 11-11 shows the MVFR1 Register bit assignments.

RBSVRM TE SPSR D DP

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Table 11-7 MVFR0 Register bit assignments

Bits Name Function

[31:28] RM Rounding modes supported:
0x1 = all VFP rounding modes supported.

[27:24] SV VFP short vector hardware support:
0x0 = not supported.

[23:20] SR VFP hardware square root:
0x1 = supported.

[19:16] D VFP hardware divide:
0x1 = supported.

[15:12] TE VFP exception trapping:
0x0 = only untrapped exception handling can be selected.

[11:8] DP Hardware support for VFP double-precision:
0x0 = no double-precision support present in hardware
0x2 = VFPv3 double-precision HW support present.

[7:4] SP Hardware single-precision support:
0x2 = VFPv3 supported.

[3:0] RB VFP register bank 16x64-bit register bank support:
0x1 = supported

FZReserved I DNSP LS

31 20 19 16 15 12 11 8 7 4 3 024 2328 27

VFP HPFP VFP 
A_SIMD
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-10
ID092411 Non-Confidential



FPU Programmers Model 
Table 11-8 MVFR1 Register bit assignments

Bits Name Function

[31:28] - Reserved

[27:24] VFP HPFP VFP half-precision conversions:
0x0 = no support.

[23:20] VFP A_SIMD Advanced SIMD half-precision conversions:
0x0 = no support.

[19:16] SP Single-precision floating-point operation support for Advanced SIMD:
0x0 = no support.

[15:12] I Integer operation support for Advanced SIMD:
0x0 = no support.

[11:8] LS Load and store instruction support for Advanced SIMD:
0x0 = no support.

[7:4] DN Indicates whether the VFP hardware supports only Default NaN mode:
0x1 = hardware supports propagation of NaN values in addition to Default NaN mode.

[3:0] FZ Indicates whether the VFP hardware supports only Flush-to-Zero mode:
0x1 = hardware supports full denormal arithmetic in addition to Flush-to-Zero mode.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-11
ID092411 Non-Confidential



FPU Programmers Model 
11.4 Modes of operation
The FPU provides three modes of operation to accommodate a variety of applications:
• Full-compliance mode
• Flush-to-zero mode
• Default NaN mode.

11.4.1 Full-compliance mode

In full-compliance mode, the FPU processes all operations according to the IEEE 754 standard 
in hardware.

11.4.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode. In this mode, the FPU treats all 
subnormal input operands of arithmetic CDP operations as zeros in the operation. Exceptions that 
result from a zero operand are signaled appropriately. VABS, VNEG, and VMOV are not considered 
arithmetic CDP operations and are not affected by flush-to-zero mode. A result that is tiny, as 
described in the IEEE 754 standard, for the destination-precision is smaller in magnitude than 
the minimum normal value before rounding and is replaced with a zero. The IDC flag, 
FPSCR[7], indicates when an input flush occurs. The UFC flag, FPSCR[3], indicates when a 
result flush occurs. 

11.4.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In this mode, the result of any 
operation that involves an input NaN, or that generated a NaN result, returns the default NaN. 
Propagation of the fraction bits is maintained only by VABS, VNEG, and VMOV operations. All other 
CDP operations ignore any information in the fraction bits of an input NaN.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-12
ID092411 Non-Confidential



FPU Programmers Model 
11.5 Compliance with the IEEE 754 standard
When Default NaN (DN) and Flush-to-Zero (FZ) modes are disabled, the VFP functionality is 
compliant with the IEEE 754 standard in hardware. No support code is required to achieve this 
compliance.

See the ARM Architecture Reference Manual for information about VFP architecture 
compliance with the IEEE 754 standard.

11.5.1 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP instruction 
set:
• remainder
• round floating-point number to integer-valued floating-point number
• binary-to-decimal conversions
• decimal-to-binary conversions
• direct comparison of single-precision and double-precision values. 

For complete implementation of the IEEE 754 standard, VFP functionality must be augmented 
with library functions that implement these operations. See Application Note 98, VFP Support 
Code for information on the available library functions.

11.5.2 IEEE 754 standard implementation choices

Some of the implementation choices permitted by the IEEE 754 standard and used in the VFPv3 
architecture are described in the ARM Architecture Reference Manual. 

NaN handling

All single-precision and double-precision values with the maximum exponent field value and a 
nonzero fraction field are valid NaNs. A most significant fraction bit of zero indicates a 
Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN values are treated as 
different NaNs if they differ in any bit. Table 11-9 shows the default NaN values in both 
single-precision and double-precision.

Processing of input NaNs for ARM floating-point functionality and libraries is defined as 
follows:

• In full-compliance mode, NaNs are handled as described in the ARM Architecture 
Reference Manual. The hardware processes the NaNs directly for arithmetic CDP 
instructions. For data transfer operations, NaNs are transferred without raising the Invalid 
Operation exception. For the non-arithmetic CDP instructions, VABS, VNEG, and VMOV, NaNs 
are copied, with a change of sign if specified in the instructions, without causing the 
Invalid Operation exception. 

Table 11-9 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent 0xFF 0x7FF

Fraction bit [22] = 1, bits [21:0] are all zeros bit [51] = 1, bits [50:0] are all zeros
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-13
ID092411 Non-Confidential



FPU Programmers Model 
• In default NaN mode, arithmetic CDP instructions involving NaN operands return the 
default NaN regardless of the fractions of any NaN operands. SNaNs in an arithmetic CDP 
operation set the IOC flag, FPSCR[0]. NaN handling by data transfer and non-arithmetic 
CDP instructions is the same as in full-compliance mode.

Table 11-10 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify the flags in the FPSCR Register. You can use the VMRS APSR_nzcv, 
FPSCR instruction (formerly FMSTAT) to transfer the current flags from the FPSCR Register to the 
CPSR Register. See the ARM Architecture Reference Manual for mapping of IEEE 754 standard 
predicates to ARM conditions. The flags used are chosen so that subsequent conditional 
execution of ARM instructions can test the predicates defined in the IEEE 754 standard.

Underflow

The Cortex-R5F FPU uses the before rounding form of tininess and the inexact result form of 
loss of accuracy as described in the IEEE 754 standard to generate Underflow exceptions.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE 754 
standard, are flushed to a zero, and the UFC flag, FPSCR[3], is set. See the ARM Architecture 
Reference Manual for information on flush-to-zero mode.

When the FPU is not in flush-to-zero mode, operations are performed on subnormal operands. 
If the operation does not produce a tiny result, it returns the computed result, and the UFC flag, 
FPSCR[3], is not set. The IXC flag, FPSCR[4], is set if the operation is inexact. If the operation 
produces a tiny result, the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is 
set if the result was also inexact.

11.5.3 Exceptions

The FPU implements the VFPv3 architecture and sets the cumulative exception status flag in 
the FPSCR register as required for each instruction. The FPU does not support user-mode traps. 
The exception enable bits in the FPSCR read-as-zero, and cannot be written. The processor also 

Table 11-10 QNaN and SNaN handling

Instruction 
type

Default 
NaN mode With QNaN operand With SNaN operand

Arithmetic CDP

Off The QNaN or one of the QNaN operands, if there 
is more than one, is returned according to the rules 
given in the ARM Architecture Reference Manual.

IOCa set. The SNaN is quieted and the result 
NaN is determined by the rules given in the 
ARM Architecture Reference Manual.

On Default NaN returns. IOCa set. Default NaN returns.

Non-arithmetic 
CDP

Off
NaN passes to destination with sign changed as appropriate.

On

VFCMP - Unordered compare. IOC set. Unordered compare.

VFCMPE - IOC set. Unordered compare. IOC set. Unordered compare.

Load/store
Off

All NaNs transferred.
On

a. IOC is the Invalid Operation exception flag, FPSCR[0].
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-14
ID092411 Non-Confidential



FPU Programmers Model 
has six output pins, FPIXCm, FPUFCm, FPOFCm, FPDZCm, FPIDCm, and FPIOCm, that 
each reflect the status of one of the cumulative exception flags. See FPU signals on page A-32 
for a description of these outputs. You can mask each of these outputs masked by setting the 
corresponding bit in the Secondary Auxiliary Control Register.

See c1, Auxiliary Control Register on page 4-41 for more information.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 11-15
ID092411 Non-Confidential



Chapter 12 
Debug

This chapter describes the processor debug unit. These features assist the development of 
application software, operating systems, and hardware. This chapter contains the following 
sections:
• Debug systems on page 12-2
• About the debug unit on page 12-3
• Debug register interface on page 12-5
• Debug register descriptions on page 12-10
• Management registers on page 12-33
• Debug events on page 12-40
• Debug exception on page 12-42
• Debug state on page 12-45
• Cache debug on page 12-50
• External debug interface on page 12-51
• Using the debug functionality on page 12-54
• Debugging systems with energy management capabilities on page 12-70.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-1
ID092411 Non-Confidential



Debug 
12.1 Debug systems
The Cortex-R5 processor is one component of a debug system. Figure 12-1 shows a typical 
system.

Figure 12-1 Typical debug system

This typical system has three parts, described in the following sections:
• Debug host
• Protocol converter
• Debug target.

12.1.1 Debug host

The debug host is a computer, for example a personal computer, running a software debugger 
such as RealView™ Debugger. The debug host enables you to issue high-level commands such 
as setting breakpoint at a certain location, or examining the contents of a memory address.

12.1.2 Protocol converter

The debug host connects to the processor development system using an interface such as 
Ethernet. The messages broadcast over this connection must be converted to the interface 
signals of the debug target. A protocol converter performs this function, for example, RealView 
ICE.

12.1.3 Debug target

The debug target is the lowest level of the system. An example of a debug target is a 
development system with a Cortex-R5 test chip or a silicon part with a Cortex-R5 processor.

The debug target must implement some system support for the protocol converter to access the 
processor debug unit using the Advanced Peripheral Bus (APB) slave port. 

Host computer running RealView DebuggerDebug
host

For example, RealView ICE

Development system containing 
Heron processor

Debug
target

Protocol
converter
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-2
ID092411 Non-Confidential



Debug 
12.2 About the debug unit
The processor debug unit assists in debugging software running on the processor. You can use 
the processor debug unit, in combination with a software debugger program, to debug:
• application software 
• operating systems
• ARM processor-based hardware systems.

The debug unit enables you to:
• stop program execution 
• examine and alter processor state
• examine and alter memory and peripheral state
• restart the processor.

You can debug software running on the processor in the following ways:
• Halting debug-mode debugging
• Monitor debug-mode debugging
• Trace debugging, see ETM interface on page 2-11. 

The processor debug unit conforms to the ARMv7 debug architecture. For more information see 
the ARM Architecture Reference Manual.

12.2.1 Halting debug-mode debugging

When the processor debug unit is in Halting debug-mode, the processor halts program execution 
when a debug event, such as a breakpoint, occurs. When the processor is halted, an external 
debugger can examine and modify the processor state using the APB slave port. This debug 
mode is invasive to program execution.

12.2.2 Monitor debug-mode debugging

When the processor debug unit is in Monitor debug-mode, the processor takes a debug 
exception instead of halting. A special piece of software, a monitor target, can then take control 
to examine or alter the processor state. Monitor debug-mode is essential in real-time systems 
where the processor cannot be halted to collect information. Examples of these systems are 
engine controllers and servo mechanisms in hard drive controllers that cannot stop the code 
without physically damaging the components.

When debugging in Monitor debug-mode, the processor stops execution of the current program 
and starts execution of a monitor target. The state of the processor is preserved in the same 
manner as all ARM exceptions. The monitor target communicates with the debugger to access 
processor and coprocessor state, and to access memory contents and peripherals. Monitor 
debug-mode requires a debug monitor program to interface between the debug hardware and the 
software debugger.

12.2.3 Programming the debug unit

The processor debug unit is programmed using the APB slave interface. In a twin-CPU 
configuration, each CPU has its own APB slave interface and associated registers that operate 
independently of the other CPU. See Table 12-3 on page 12-6 for a complete list of 
memory-mapped debug registers accessible using the APB slave interface. Some features of the 
debug unit that you can access using the memory-mapped registers are:

• instruction address comparators for triggering breakpoints, see Breakpoint Value 
Registers on page 12-23 and Breakpoint Control Registers on page 12-24
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-3
ID092411 Non-Confidential



Debug 
• data address comparators for triggering watchpoints, see Watchpoint Value Registers on 
page 12-27 and Watchpoint Control Registers on page 12-27

• a bidirectional Debug Communication Channel (DCC), see Debug communications 
channel on page 12-55

• all other state information associated with the debug unit.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-4
ID092411 Non-Confidential



Debug 
12.3 Debug register interface
You can access the processor debug register map using the APB slave port. The APB slave port 
conforms to the AMBA3 APBv3 standard as described in the AMBA 3 APB Protocol 
Specification. This is the only way to get full access to the processor debug capability. ARM 
recommends that if your system requires the processor to access its own debug registers, you 
choose a system interconnect structure that enables the processor to access the APB slave port 
by executing load and stores to an appropriate area of physical memory.

This section describes:
• Coprocessor registers
• CP14 access permissions
• Coprocessor registers summary
• Memory-mapped registers on page 12-6
• Memory addresses for breakpoints and watchpoints on page 12-8
• Power domains on page 12-8
• Effects of resets on debug registers on page 12-8
• APB port access permissions on page 12-8.

12.3.1 Coprocessor registers

Although most of the processor debug registers are accessible through the memory-mapped 
interface, there are several registers that you can access through a coprocessor interface. This is 
important for boot-strap access to the register file. It enables software running on the processor 
to identify the debug architecture version that the device implements.

12.3.2 CP14 access permissions

By default, you can access all CP14 debug registers from a nonprivileged mode. However, you 
can program the processor to disable user-mode access to all coprocessor registers using bit [12] 
of the DBGDSCR, see CP14 c1, Debug Status and Control Register on page 12-14 for more 
information. CP14 debug register accesses are always permitted when the processor is in debug 
state regardless of the processor mode.

Table 12-1 shows access to the CP14 debug registers.

12.3.3 Coprocessor registers summary

Table 12-2 on page 12-6 shows a set of valid CP14 instructions for accessing the debug 
registers. All CP14 instructions not listed are Undefined.

Table 12-1 Access to CP14 debug registers

Debug state Processor mode DBGDSCR[12] CP14 debug access

Yes X X Permitted

No User b0 Permitted

No User b1 Not permitteda

a. Instructions attempting to access CP14 registers cause the processor to take an 
Undefined Instruction exception.

No Privileged X Permitted
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-5
ID092411 Non-Confidential



Debug 
Note
 The CP14 debug instructions are defined as having Opcode_1 set to 0.

12.3.4 Memory-mapped registers

Table 12-3 shows the complete list of memory-mapped registers accessible at the APB slave 
interface.

Note
 You must ensure that the base address of this 4KB register map is aligned to a 4KB boundary in 
physical memory.

Table 12-2 CP14 debug registers summary

Instruction Mnemonic Description

MRC p14, 0, <Rd>, c0, c0, 0 DBGDIDR Debug Identification Register. See CP14 c0, Debug ID Register on 
page 12-10.

MRC p14, 0, <Rd>, c1, c0, 0 DBGDRAR Debug ROM Address Register. See CP14 c0, Debug ROM Address Register 
on page 12-12.

MRC p14, 0, <Rd>, c2, c0, 0 DBGDSAR Debug Self Address Register. See CP14 c0, Debug Self Address Offset 
Register on page 12-12.

MRC p14, 0, <Rd>, c0, c5, 0
STC p14, c5, <addressing mode>

DBGDTRRXint Host to Target Data Transfer Register. See Data Transfer Register on 
page 12-18.

MCR p14, 0, <Rd>, c0, c5, 0
LDC p14, c5, <addressing mode>

DBGDTRTXint Target to Host Data Transfer Register. See Data Transfer Register on 
page 12-18.

MRC p14, 0, <Rd>, c0, c1, 0
MRC p14, 0, APSR_nzcv, c0, c1, 0

DBGDSCRint Debug Status and Control Register. See CP14 c1, Debug Status and Control 
Register on page 12-14.

Table 12-3 Debug memory-mapped registers

Offset 
(hex)

Register 
number Access Mnemonic Description

0x000 c0 R DBGDIDR CP14 c0, Debug ID Register on page 12-10

0x004-0x014 c1-c5 R - RAZ

0x18 c6 RW DBGWFAR Watchpoint Fault Address Register on page 12-19

0x01C c7 RW DBGVCR Vector Catch Register on page 12-19

0x020 c8 R - RAZ

0x024 c9 RW DBGECR Not implemented in this processor. Reads as zero.

0x028 c10 RW DBGDSCCR Debug State Cache Control Register on page 12-21.

0x02C c11 R - RAZ

0x030-0x07C c12-c31 R - RAZ
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-6
ID092411 Non-Confidential



Debug 
0x080 c32 RW DBGDTRRXext Data Transfer Register on page 12-18.

0x084 c33 W DBGITR Instruction Transfer Register on page 12-22.

0x088 c34 RW DBGDSCRext CP14 c1, Debug Status and Control Register on page 12-14.

0x08C c35 RW DBGDTRTXext Data Transfer Register on page 12-18.

0x090 c36 W DBGDRCR Debug Run Control Register on page 12-22.

0x094-0x09C c37-c39 R - RAZ.

0x0A0 c40 R DBGPCSR Not implemented on this processor. RAZ.

0x0A4 c41 R DBGCIDSR Not implemented on this processor. RAZ.

0x0A8-0x0FC c42-c63 R - RAZ.

0x100-0x11C c64-c71 RW DBGBVRa Breakpoint Value Registers on page 12-23.

0x120-0x13C c72-c79 R - RAZ.

0x140-0x15C c80-c87 RW DBGBCRa Breakpoint Control Registers on page 12-24.

0x160-0x17C c88-c95 R - RAZ.

0x180-0x19C c96-c103 RW DBGWVRb Watchpoint Value Registers on page 12-27.

0x1A0-0x1BC c104-c111 R - RAZ

0x1C0-0x1DC c112-c119 RW DBGWCRb Watchpoint Control Registers on page 12-27.

0x1E0-0x1FC c120-c127 R - RAZ.

0x200-0x2FC c128-c191 R - RAZ.

0x300 c192 R DBGOSLAR Not implemented in this processor. Reads as zero.

0x304 c193 R DBGOSLSR Operating System Lock Status Register on page 12-29.

0x308 c194 R DBGOSSRR Not implemented in this processor. Reads as zero.

0x30C c195 R - RAZ.

0x310 c196 RW DBGPRCR Device Power-down and Reset Control Register on page 12-31.

0x314 c197 R DBGPRSR Device Power-down and Reset Status Register on page 12-32.

0x318-0x7FC c198-c511 R - RAZ.

0x800-0x8FC c512-575 R - RAZ.

0x900-0xCFC c576-c831 R - RAZ.

0xD00-0xDFC c832-c895 R - Processor ID Registers on page 12-33.

0xE00-0xE7C c896-c927 R - RAZ.

0xE80-0xEFC c928-c959 - - Chapter 13 Integration Test Registers.

0xF00-0xFFC c960-c1023 - - Management registers on page 12-33.

Table 12-3 Debug memory-mapped registers (continued)

Offset 
(hex)

Register 
number Access Mnemonic Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-7
ID092411 Non-Confidential



Debug 
12.3.5 Memory addresses for breakpoints and watchpoints

The Vector Catch Register (DBGVCR) sets breakpoints on exception vectors as instruction 
addresses.

The Watchpoint Fault Address Register (DBGWFAR) reads an address and a processor state 
dependent offset, +8 for ARM and +4 for Thumb.

12.3.6 Power domains

Cortex-R5 supports separate debug and core power domains to enable debug over power-down.

The following debug registers are implemented in the debug domain:
• Debug ID Register (DBGDIDR)
• Debug Run Control Register (DBGDRCR)
• Device Power-down and Reset Control Register (DBGPRCR)
• Device Power-down and Reset Status Register (DBGPRSR)
• CoreSight management registers.

All other implemented debug registers are in the core domain.

All accesses to core domain debug registers when the CPU is in Dormant or Shutdown modes 
return an error response on the CPU APB interface. 

For more information about these registers and the split between core domain and debug domain 
registers, see the ARM Architecture Reference Manual.

12.3.7 Effects of resets on debug registers

The processor has the following reset signals that affect the processor debug logic:

nSYSPORESET 
This signal resets all processor logic including the debug logic.

DBGRESETmn 
This signal resets all the core domain debug logic.

PRESETDBGmn 
This signal resets all debug domain debug logic.

See Resets on page 2-12 for more information on resets and reset requirements.

12.3.8 APB port access permissions

The restrictions for accessing the APB slave port are as follows:

Privilege of memory access 
You must configure the system to disable accesses to the memory-mapped 
registers based on the privilege of the memory access.

a. The actual number of registers depends on the number of breakpoints configured. For non-implemented breakpoints, the 
corresponding registers are RAZ.

b. The actual number of registers depends on the number of watchpoints configured. For non-implemented watchpoints, the 
corresponding registers are RAZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-8
ID092411 Non-Confidential



Debug 
Privilege of memory access permission

When non-privileged software attempts to access the APB slave port, the system must ignore 
the access or generate an error response to the access. You must implement this restriction at the 
system level because the APB protocol does not have a privileged or user control signal. You 
can choose to have the system either ignore the access or generate an error response.

You can place additional restrictions on memory transactions that are permitted to access the 
APB port. However, ARM does not recommend this.

Locks permission

You can lock the APB slave port so that access to some debug registers is restricted. ARM 
Architecture v7 defines two locks:

Software lock 
The external debugger can set this lock to prevent software from modifying the 
debug registers settings. A debug monitor can also set this lock prior to returning 
control to the application to reduce the chance of erratic code changing the debug 
settings. When this lock is set, writes to all debug registers are ignored, except 
those generated by the external debugger, that override the lock. This is 
summarized in Table 12-4. For more information, see Lock Access Register on 
page 12-35.

OS Lock The processor does not support OS Lock.

Note
 • These locks are set to their reset values only on reset of the debug logic, provided by 

PRESETDBGmn.

• You must set the PADDRDBG31m input signal to 1 for accesses originated from the 
external debugger for the Software Lock override feature to work.

Table 12-4 External debug interface access permissions

PADDRDBG31m Lock 

Registers

DBGDRCR, DBGPRCR, 
DBGPRSR Other Debug registers DBGLAR Other registers

1 Xa OKb OKc OKc OKc

0 1c WId WIe OKc WIe

0 0 OKc OKc OKc OKc

a. X indicates that the outcome does not depend on this condition.
b. OK indicates that the access succeeds.
c. DBGLSR[1] bit is set.
d. WI indicates that writes are ignored.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-9
ID092411 Non-Confidential



Debug 
12.4 Debug register descriptions
Table 12-5 shows definitions of terms used in the register descriptions.

12.4.1 CP14 c0, Debug ID Register

The DBGDIDR Register characteristics are:

Purpose Identifies the debug architecture version and specifies the number of 
debug resources that the processor implements.

Usage constraints The DBGDIDR is:
• in CP14 c0
• a 32 bit read-only register
• accessible in User and Privileged modes.

Configurations Available in all processor configurations.

Attributes See Table 12-6 on page 12-11.

Figure 12-2 shows the bit assignments.

Figure 12-2 DBGDIDR Register bit assignments

Table 12-5 Terms used in register descriptions

Term Description

R Read-only. Written values are ignored.

W Write-only. This bit cannot be read. Reads return an Unpredictable value.

RW Read or write.

RAZ Read-As-Zero. Always zero when read.

RAO Read-As-One. Always one when read.

SBZP Should-Be-Zero (SBZ) or Preserved (P). Must be written as 0 or preserved by writing the same value previously 
read from the same fields on the same processor. These bits are usually reserved for future expansion.

UNP A read from this bit returns an Unpredictable value.

ReservedWRP

31 28 27 24 23 20 19 16 15 4 3 0

BRP Context ID Variant Revision

Debug architecture 
version

8 714 13 12 11

DEVID_imp
nSUHD_imp
PCSR_imp
SE_imp
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-10
ID092411 Non-Confidential



Debug 
Table 12-6 shows the bit assignments.

The values of the following fields of the DBGDIDR agree with the values in CP15 c0, Main ID 
Register:
• DBGDIDR[3:0] is the same as CP15 c0 bits [3:0]
• DBGDIDR[7:4] is the same as CP15 c0 bits [23:20].

See c0, Main ID Register on page 4-14 for more information of CP15 c0, Main ID Register. 

The reason for duplicating these fields here is that the DBGDIDR is also accessible through the 
APB slave port. This enables an external debugger to determine the variant and revision 
numbers without stopping the processor.

To use the DBGDIDR, read CP14 c0 with:

MRC p14, 0, <Rd>, c0, c0, 0 ; Read DBGDIDR

Table 12-6 DBGDIDR Register bit assignments

Bits Name Function

[31:28] WRP Number of Watchpoint Register Pairs:
b0000 = 1 WRP
b0001 = 2 WRPs
...
b0111 = 8 WRPs.

[27: 24] BRP Number of Breakpoint Register Pairs:
b0001 = 2 BRPs
b0010 = 3 BRPs
...
b0111 = 8 BRPs.

[23:20] Context Number of Breakpoint Register Pairs (BRP) with context ID comparison capability:
b0000 = 1 BRP has context ID comparison capability.

[19:16] Debug architecture 
version

Debug architecture version:
b0100 denotes ARMv7 Debug.

[15] DEVID_imp Indicates whether DBGDEVID is implemented.
0 = not implemented, register 1010 is reserved.

[14] nSUHD_imp RAZ.

[13] PCSR_imp RAZ.

[12] SE_imp RAZ.

[11:8] - RAZ.

[7: 4] Variant Implementation-defined variant number.This is the major revision number n in the rn part 
of the rnpn description of the product revision status. 

[3: 0] Revision Implementation-defined revision number. This is the minor revision number n in the pn 
part of the rnpn description of the product revision status. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-11
ID092411 Non-Confidential



Debug 
12.4.2 CP14 c0, Debug ROM Address Register

The DBGDSAR Register characteristics are:

Purpose Returns a 32-bit Debug ROM Address Register value. This is the address 
that indicates where in memory a debug monitor can locate the debug bus 
ROM specified by the CoreSight™ multiprocessor trace and debug 
architecture. Returns a 32-bit Debug ROM Address Register value. This 
is the address that indicates where in memory a debug monitor can locate 
the debug bus ROM specified by the CoreSight™ multiprocessor trace and 
debug architecture. 

Usage constraints The DBGDRAR is:
• in CP14 c0, sub-register c1
• a 32 bit read-only register
• accessible in User and Privileged modes.

Configurations Available in all processor configurations.

Attributes See Table 12-7.

Figure 12-3 shows the bit assignments.

Figure 12-3 DBGDRAR Register bit assignments

Table 12-7 shows the bit assignments.

To use the DBGDRAR, read CP14 c0 with:

MRC p14, 0, <Rd>, c1, c0, 0 ; Read DBGDRAR

12.4.3 CP14 c0, Debug Self Address Offset Register

The DBGDSAR Register characteristics are:

Purpose The DBGDSAR is a read-only register that returns a 32-bit offset value 
from the Debug ROM Address Register to the address of the CPU debug 
registers. You can configure the address read in this register during 
integration using the DBGSELFADDRm[31:12] and 
DBGSELFADDRVm inputs. DBGSELFADDRVm must be tied off to 1 
if DBGSELFADDRm[31:12] is tied off to a valid value.

Debug bus ROM physical address Reserved

Valid bits

31 12 11 2 1 0

Table 12-7 DBGDRAR Register bit assignments

Bits Name Function

[31:12] Debug bus ROM address Indicates bits [31:12] of the debug bus ROM address.

[11: 2] - SBZ.

[1:0] Valid bits Indicates that the ROM address is valid.
Reads b11 if DBGROMADDRV is set to 1, otherwise reads b00. DBGROMADDRV must 
be set to 1 if DBGROMADDR[31:12] is set to a valid value.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-12
ID092411 Non-Confidential



Debug 
Usage constraints The DBGDSAR is:
• in CP14 c0, sub-register c2
• a 32 bit read-only register
• accessible in User and Privileged modes.

Configurations Available in all processor configurations.

Attributes See Table 12-8.

Figure 12-4 shows the bit assignments.

Figure 12-4 DBGDSAR Register bit assignments

Table 12-8 shows the bit assignments.

To use the DBGDSAR, read CP14 c0 with:

MRC p14, 0, <Rd>, c2, c0, 0 ; Read DBGDSAR

Debug bus self address offset value Reserved

Valid bits

31 12 11 2 1 0

Table 12-8 DBGDSAR Register bit assignments

Bits Name Function

[31:12] Debug bus self 
address offset value

Indicates bits [31:12] of the two’s complement offset from the debug ROM physical 
address to the physical address where the debug registers are mapped.

[11: 2] - UNP on reads, SBZP on writes.

[1:0] Valid bits Reads b11 if DBGSELFADDRVm is set to 1, otherwise reads b00. DBGSELFADDRVm 
must be set to 1 if DBGSELFADDRm[31:12] is set to a valid value.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-13
ID092411 Non-Confidential



Debug 
12.4.4 CP14 c1, Debug Status and Control Register

The DBGDSCR Register characteristics are:

Purpose Contains status and control information about the debug unit. 

Usage constraints See DTR access mode on page 12-17.

Configurations Available in all processor configurations.

Attributes See Table 12-9.

Figure 12-5 shows the bit assignments.

Figure 12-5 DBGDSCR Register bit assignments

Table 12-9 shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 1 0

MOE

RXfull
TXfull

Reserved
PipeAdv

InstrCompl_l

ExtDCCmode
ADAdiscard

Reserved
MDBGen
HDBGen

ITRen

UDCCdis
INTdis
DBGack

SDABORT_l
ADABORT_l
UND_l

RESTARTED
HALTED

Reserved

Reserved

Reserved

Table 12-9 DBGDSCR Register bit assignments

Bits Name Function

[31] - RAZ on reads, SBZP on writes.

[30] RXfull The RXfull flag:
0 = Read-DTR, DBGDTRRX, empty, reset value
1 = Read-DTR, DBGDTRRX, full.
When set, this flag indicates to the processor that there is data available to read at the DBGDTRRXint. 
It is automatically set on writes to the DBGDTRRXext by the debugger, and is cleared when the 
processor reads the CP14 DTR. If the flag is not set, the DBGDTRRXint returns an Unpredictable 
value.

[29] TXfull The TXfull flag:
0 = Write-DTR, DBGDTRTX, empty, reset value
1 = Write-DTR, DBGDTRTX, full.
When clear, this flag indicates to the processor that the DBGDTRTXint is ready to receive data. It is 
automatically cleared on reads of the DBGDTRTXext by the debugger, and is set when the processor 
writes to the CP14 DTR. If this bit is set and the processor attempts to write to the DBGDTRTXint, the 
register contents are overwritten and the TXfull flag remains set.

[28:26] - RAZ on reads, SBZP on writes.

[25] PipeAdv Sticky pipeline advance read-only bit. This bit enables the debugger to detect whether the processor is 
idle. In some situations, this might mean that the system bus port is deadlocked. This bit is set to 1 when 
the processor pipeline retires one instruction. It is cleared by a write to DBGDRCR[3].
0 = no instruction has completed execution since the last time this bit was cleared
1 = an instruction has completed execution since the last time this bit was cleared.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-14
ID092411 Non-Confidential



Debug 
[24] InstrCompl_l Instruction complete read-only bit. This flag determines whether the processor has completed 
execution of an instruction issued through the APB port.
0 = processor is executing an instruction fetched from the DBGITR Register
1 = processor is not executing an instruction fetched from the DBGITR Register.
When the APB port reads the DBGDSCR and this bit is clear, then a subsequent write to the DBGITR 
Register is ignored unless DBGDSCR[21:20] is not equal to 0. If DBGDSCR[21:20] is not equal to 0, 
the DBGITR write stalls until the processor completes execution of the current instruction. If the 
processor is not in debug state, then the value read for this flag is Unpredictable. The flag is set to 1 on 
entry to debug state.

[23:22] - RAZ on reads, SBZP on writes.

[21:20] ExtDCCmode DTR access mode. You can use this field to optimize DTR traffic between a debugger and the 
processor.
b00 = Non-blocking mode, this is the reset value
b01 = Stall mode
b10 = Fast mode
b11 = Reserved.

Note
 • This field only affects the behavior of DBGDSCRext, DBGDTRRXext, DBGDTRTXext, and 

DBGITR accesses through the APB port, and not through CP14 debug instructions. 
• Non-blocking mode is the default setting. Improper use of the other modes might result in the 

debug access bus becoming deadlocked.

See DTR access mode on page 12-17 for more information.

[19] ADAdiscard The Asynchronous Aborts Discarded bit is set when the processor is in debug state and is cleared on 
exit from debug state. While this bit is set, the processor does not take asynchronous Data Aborts, 
instead, the sticky asynchronous Data Abort bit is set to 1.
0 = do not discard asynchronous Data Aborts
1 = discard asynchronous Data Aborts and set ADABORT_I.

[18] NS RAZ on reads, SBZP on writes.

[17] SPNIDdis This bit is the inverse of bit [6] of the DBGAUTHSTATUS, see Authentication Status Register on 
page 12-30.

[17] SPIDdis This bit is the inverse of bit [4] of the DBGAUTHSTATUS, see Authentication Status Register on 
page 12-30.

[15] MDBGen The Monitor debug-mode enable bit:
0 = Monitor debug-mode disabled, this is the reset value
1 = Monitor debug-mode enabled.
If Halting debug-mode is enabled through bit [14], then the processor is in Halting debug-mode 
regardless of the value of bit [15]. If the external interface input DBGENm is LOW, this bit reads as 
0. The programmed value is masked until DBGENm is HIGH, and at that time the read value reverts 
to the programmed value.

[14] HDBGen The Halting debug-mode enable bit:
0 = Halting debug-mode disabled, this is the reset value
1 = Halting debug-mode enabled.
If the external interface input DBGENm is LOW, this bit reads as 0. The programmed value is masked 
until DBGENm is HIGH, and at that time the read value reverts to the programmed value.

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-15
ID092411 Non-Confidential



Debug 
[13] ITRen Execute ARM instruction enable bit:
0 = disabled, this is the reset value
1 = enabled.
If this bit is set and an DBGITR write succeeds, the processor fetches an instruction from the DBGITR 
for execution. If this bit is set to 1 when the processor is not in debug state, the behavior of the 
processor is Unpredictable.

[12] UDCCdis CP14 debug user access disable control bit:
0 = CP14 debug user access enable, this is the reset value
1 = CP14 debug user access disable.
If this bit is set and a User mode process attempts to access any CP14 debug registers, an Undefined 
Instruction exception is taken.

[11] IntDis Interrupts disable bit:
0 = interrupts enabled, this is the reset value
1 = interrupts disabled.
If this bit is set, the nIRQm and nFIQm input signals are inhibited. The external debugger can 
optionally use this bit to execute pieces of code in normal state as part of the debugging process and 
avoid having an interrupt taking control of the program flow. 

[10] DbgAck Force Debug Acknowledge bit. If this bit is set to 1, the DBGACKm output signal is forced HIGH, 
regardless of the processor state. The external debugger can optionally use this bit to execute pieces of 
code in normal state as part of the debugging process for the system to behave as if the processor is in 
debug state. Some systems rely on DBGACKm to determine whether data accesses are application or 
debugger generated. This bit is 0 on reset.

[9] - RAZ on reads, SBZP on writes.

[8] UND_I Sticky Undefined bit:
0 = no Undefined Instruction exception occurred in debug state since the last time this bit was cleared
1 = an Undefined Instruction exception occurred while in debug state since the last time this bit was 
cleared.
This flag detects Undefined Instruction exceptions generated by instructions issued to the processor 
through the DBGITR. This bit is set to 1 when an Undefined Instruction exception occurs while the 
processor is in debug state and is cleared by writing a 1 to DBGDRCR[2].

[7] ADABORT_l Sticky asynchronous Data Abort bit:
0 = no asynchronous Data Aborts occurred since the last time this bit was cleared
1 = an asynchronous Data Abort occurred since the last time this bit was cleared.
This flag detects asynchronous Data Aborts triggered by instructions issued to the processor through 
the DBGITR. This bit is set to 1 when an asynchronous Data Abort occurs while the processor is in 
debug state and is cleared by writing a 1 to DBGDRCR[2].

[6] SDABORT_I Sticky synchronous Data Abort bit:
0 = no synchronous Data Abort occurred since the last time this bit was cleared
1 = a synchronous Data Abort occurred since the last time this bit was cleared.
This flag detects synchronous Data Aborts generated by instructions issued to the processor through 
the DBGITR. This bit is set to 1 when a synchronous Data Abort occurs while the processor is in debug 
state and is cleared by writing to the DBGDRCR[2].

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-16
ID092411 Non-Confidential



Debug 
To use the DBGDSCR, read or write CP14 c1 with:

MRC p14, 0, <Rd>, c0, c1, 0 ; Read DBGDSCR
MCR p14, 0, <Rd>, c0, c1, 0 ; Write DBGDSCR

DTR access mode

You can use the ExtDCCmode field to optimize data transfer between a debugger and the 
processor. 

The DCC access mode can be one of the following:
• Nonblocking. This is the default mode.
• Stall.
• Fast.

In Non-blocking mode, reads from DBGDTRTXext and writes to DBGDTRRXext and 
DBGITR are ignored if the appropriate latched ready flag is not in the ready state. These latched 
flags are updated on DBGDSCR reads. The following applies:

• writes to DBGDTRRXext are ignored if RXfull_l is set to b1

• reads from DBGDTRTXext are ignored, and return an Unpredictable value, if TXfull_l is 
set to b0

[5:2] MOE Method of entry bits:
b0000 = a DBGDRCR[0] halting debug event occurred
b0001 = a breakpoint occurred
b0100 = an EDBGRQm halting debug event occurred
b0011 = a BKPT instruction occurred
b1010 = a synchronous watchpoint occurred
others = reserved.
These bits are set to indicate any of:
• the cause of a debug exception
• the cause for entering debug state.
A Prefetch Abort or Data Abort handler must check the value of the CP15 Fault Status Register to 
determine whether a debug exception occurred and then use these bits to determine the specific debug 
event.

[1]a RESTARTED CPU restarted bit:
0 = The processor is exiting debug state.
1 = The processor has exited debug state. This is the reset value.
The debugger can poll this bit to determine when the processor responds to a request to leave debug 
state.

[0]a HALTED CPU halted bit:
0 = The processor is in normal state. This is the reset value.
1 = The processor is in debug state.
The debugger can poll this bit to determine when the processor has entered debug state.

a. These bits always reflect the status of the processor, therefore they only have a reset value if the particular reset event affects the processor. 
For example, a PRESETDBGmn event leaves these bits unchanged and a processor reset event such as nSYSPORESET sets 
DBGDSCR[18] to a 0 and DBGDSCR[1:0] to 10.

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-17
ID092411 Non-Confidential



Debug 
• writes to DBGITR are ignored if InstrCompl_l is set to b0

• following a successful write to DBGDTRRXext, RXfull and RXfull_l are set to b1

• following a successful read from DBGDTRTXext, TXfull and TXfull_l are cleared to b0

• following a successful write to DBGITR, the internal flags InstrCompl and InstrCompl_l 
are cleared to b0.

Debuggers accessing these registers must first read DBGDSCRext. This has the side-effect of 
copying RXfull and TXfull to RXfull_l and TXfull_l. The debugger must then:
• write to the DBGDTRRXext if the RXfull flag was b0 (RXfull_l is b0)
• read from the DBGDTRTXext if the TXfull flag was b1 (TXfull_l is b1)
• write to the DBGITR if the InstrCompl_l flag was b1.

However, debuggers can issue both actions together and later determine from the read 
DBGDSCR value whether the operations were successful.

In Stall mode, the APB accesses to DBGDTRRXext, DBGDTRTXext, and DBGITR stall under 
the following conditions:
• writes to DBGDTRRXext are stalled until RXfull is cleared
• writes to DBGITR are stalled until InstrCompl is set
• reads from DBGDTRTXext are stalled until TXfull is set.

Fast mode is similar to Stall mode except that in Fast mode, the processor fetches an instruction 
from the DBGITR when a DBGDTRRXext write or DBGDTRTXext read succeeds. In Stall 
mode and Nonblocking mode, the processor fetches an instruction from the DBGITR when a 
DBGITR write succeeds.

12.4.5 Data Transfer Register

The DTR consists of two separate physical registers: 
• the DBGDTRRX (Read Data Transfer Register)
• the DBGDTRTX (Write Data Transfer Register).

The register accessed is dependent on the instruction used:
• writes, MCR and LDC instructions, access the DBGDTRTX
• reads, MRC and STC instructions, access the DBGDTRRX.

Note
 Read and write are used with respect to the processor. 

For information on the use of these registers with the TXfull flag and RXfull flag, see Debug 
communications channel on page 12-55. The Data Transfer Register, bits [31:0] contain the data 
to be transferred.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-18
ID092411 Non-Confidential



Debug 
Table 12-10 shows how the bit values correspond with the DBGDTRRX and DBGDTRTX 
functions.

12.4.6 Watchpoint Fault Address Register

The DBGWFAR Register characteristics are:

Purpose Holds the address of the instruction that triggers the watchpoint.

Usage constraints There are no usage constraints.

Configurations Available in all processor configurations.

Attributes See Table 12-11.

Figure 12-6 shows the bit assignments.

Figure 12-6 DBGWFAR Register bit assignments

Table 12-11 shows the bit assignments.

12.4.7 Vector Catch Register

The DBGVCR Register characteristics are:

Purpose Controls efficient exception vector catching.

Table 12-10 Data Transfer Register bit assignments

Bits Name Function

[31:0] Data Reads the Data Transfer Register. This is read-only for the CP14 interface.

Note
 Reads of the DBGDTRRXint through the coprocessor interface cause the TXfull flag to be cleared. 
However, reads of the DBGDTRRXext through the APB port do not affect this flag.

[31:0] Data Writes the Data Transfer Register. This is write-only for the CP14 interface.

Note
 Writes to the DBGDTRTXint through the coprocessor interface cause the RXfull flag to be set. 
However, writes to the DBGDTRTXext through the APB port do not affect this flag.

Address

31 01

Reserved

Table 12-11 DBGWFAR Register bit assignments

Bits Name Function

[31:1] Address This is the address of the watchpointed instruction. When a watchpoint occurs in ARM state, the 
DBGWFAR contains the address of the instruction causing it plus an offset of 0x8. When a 
watchpoint occurs in Thumb state, the offset is plus 0x4.

[0] - RAZ.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-19
ID092411 Non-Confidential



Debug 
Usage constraints • If one of the bits in this register is set and the instruction at the 
corresponding vector is committed for execution, the processor 
either enters debug state or takes a debug exception.

• Under this model, any prefetch from an exception vector can trigger 
a vector catch, not only the ones because of exception entries. An 
explicit branch to an exception vector might generate a vector catch 
debug event.

• If any of the bits are set when the processor is in Monitor 
debug-mode, then the processor ignores the setting and does not 
generate a vector catch debug event. This prevents the processor 
entering an unrecoverable state. The debugger must program these 
bits to zero when Monitor debug-mode is selected and enabled to 
ensure forward-compatibility.

Configurations Available in all processor configurations.

Attributes See Table 12-12.

as Figure 12-7 shows.

Figure 12-7 DBGVCR Register bit assignments

Table 12-12 shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

Reserved

Reset
Undefined

SVC
Prefetch abort

Data abort
Reserved

IRQ
FIQ

Table 12-12 DBGVCR Register bit assignments

Bits Name Reset 
value

Normal 
address

High vectors 
address Function Access

[31:8] - 0 - - Do not modify on writes. On reads, the value 
returns zero.

RAZ or 
SBZP

[7] FIQ 0 0x0000001C 0xFFFF001C Vector catch enable, FIQ. RW

[6] IRQ - 0x00000018a 0xFFFF0018a Vector catch enable, IRQ. -

[5] - 0 - - Do not modify on writes. On reads, the value 
returns zero.

RAZ or 
SBZP

[4] Data Abort 0 0x00000010 0xFFFF0010 Vector catch enable, data abort. RW

[3] Prefetch Abort 0 0x0000000C 0xFFFF000C Vector catch enable, prefetch abort. RW
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-20
ID092411 Non-Confidential



Debug 
12.4.8 Debug State Cache Control Register

The DBGDSCCR Register characteristics are:

Purpose Controls the L1 cache behavior when the processor is in debug state.

Usage constraints For information on the usage model of the DBGDSCCR register, see 
Cache debug on page 12-50.

Configurations Available in all processor configurations.

Attributes See Table 12-13.

Figure 12-8 shows the bit assignments.

Figure 12-8 DBGDSCCR Register bit assignments

Table 12-13 shows the bit assignments.

[2] SVC 0 0x00000008 0xFFFF0008 Vector catch enable, SVC. RW

[1] Undefined 0 0x00000004 0xFFFF0004 Vector catch enable, Undefined Instruction. RW

[0] Reset 0 0x00000000 0xFFFF0000 Vector catch enable, reset. RW

a. If the VIC interface is enabled, the address is the last IRQ handler address supplied by the VIC, whether or not high vectors are in use.

Table 12-12 DBGVCR Register bit assignments (continued)

Bits Name Reset 
value

Normal 
address

High vectors 
address Function Access

31 2 131 0

Not write-through

Reserved

3

Instruction cache line-fill

Data cache line-fill

Table 12-13 DBGDSCCR Register bit assignments

Bits Name Reset
value Function

[31:3] - 0 Reserved. Do not modify on writes. On reads, the value returns zero.

[2] nWT 0 Not write-through:
1 = normal operation of regions marked as write-back in debug state
0 = force write-through behavior for regions marked as write-back in debug state, this is the reset value.

[1] nIL 0 Instruction cache line-fill:
1 = normal operation of L1 instruction cache in debug state
0 = L1 instruction cache line-fills disabled in debug state, this is the reset value.

[0] nDL 0 Data cache line-fill:
1 = normal operation of L1 data cache in debug state
0 = L1 data cache line-fills disabled in debug state, this is the reset value.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-21
ID092411 Non-Confidential



Debug 
12.4.9 Instruction Transfer Register

The DBGITR enables the external debugger to feed instructions into the processor for execution 
while in debug state. The DBGITR is a write-only register. Reads from the DBGITR return an 
Unpredictable value.

The Instruction Transfer Register, bits [31:0] contain the ARM instruction for the processor to 
execute while in debug state. The reset value of this register is Unpredictable.

Note
 Writes to the DBGITR when the processor is not in debug state or the DBGDSCR[13] execute 
instruction enable bit is cleared are Unpredictable. When an instruction is issued to the 
processor, the debug unit prevents the next instruction from being issued until the 
DBGDSCR[25] instruction complete bit is set.

12.4.10 Debug Run Control Register

The DBGDSCR Register characteristics are:

Purpose • Requests the processor to enter or leave debug state. 
• Clears the sticky exception bits present in the DBGDSCR.

Usage constraints The DBGDRCR is a write-only register.

Configurations Available in all processor configurations.

Attributes See Table 12-14 on page 12-23.

Figure 12-9 shows the bit assignments.

Figure 12-9 DBGDRCR Register bit assignments

31 05 3

Reserved

Cancel memory request

2 14

Clear sticky pipeline advance

Clear sticky exceptions

Restart request

Halt request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-22
ID092411 Non-Confidential



Debug 
Table 12-14 shows the bit assignments.

12.4.11 Breakpoint Value Registers

Each DBGBVR is associated with a Breakpoint Control Register (DBGBCR). DBGBCRy is the 
corresponding control register for DBGBVRy.

A pair of breakpoint registers, DBGBVRy/DBGBCRy, is called a Breakpoint Register Pair 
(BRP). DBGBVR0-7 are paired with DBGBCR0-7 to make BRP0-7.

The breakpoint value contained in this register corresponds to either an instruction address or a 
context ID. Breakpoints can be set on:
• an instruction address
• a context ID value
• an instruction address and context ID pair.

For an instruction address and context ID pair, two BRPs must be linked. A debug event is 
generated when both the instruction address and the context ID pair match at the same time.

Table 12-14 DBGDRCR Register functions

Bits Name Function

[31:5] - RAZ.

[4] Cancel memory 
requests

If 1 is written to this bit, the processor abandons any pending memory transactions until it can enter 
debug state. Debug state entry is the acknowledge event that clears this request. Abandoned transactions 
have the following behavior:
• abandoned stores might write an Unpredictable value to the target address
• abandoned loads return an Unpredictable value to the register bank.
An abandoned transaction does not cause any exception. Additional instruction fetches or data accesses 
after the processor entered debug state have an Unpredictable behavior.
This bit enables the debugger to progress on a deadlock so the processor can enter debug state. For a 
debug state entry to occur, a halting debug event must be requested before this bit is set. If you write a 1 
to this bit when DBGENm is LOW, the write has no effect.a

[3] Clear sticky 
pipeline advance

Writing a 1 to this bit clears DBGDSCR[25].

[2] Clear sticky 
exceptions

Writing a 1 to this bit clears DBGDSCR[8:6].

[1] Restart request Writing a 1 to this bit requests that the processor leaves debug state. This request is held until the 
processor exits debug state. When the debugger makes this request, it polls DBGDSCR[1] until it reads 
1. This bit always reads as zero. Writes are ignored when the processor is not in debug state.

[0] Halt request Writing a 1 to this bit triggers a halting debug event, that is, a request that the processor enters debug 
state. This request is held until the debug state entry occurs. When the debugger makes this request, it 
must poll DBGDSCR[0] until it reads 1. This bit always reads as zero. Writes are ignored when the 
processor is already in debug state.

a. Entry into debug state is not expected to be recoverable.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-23
ID092411 Non-Confidential



Debug 
Table 12-15 shows how the bit values correspond with the Breakpoint Value Registers 
functions.

Note
 • Only BRPn supports context ID comparison, where n+1 is the number of breakpoint 

register pairs implemented in the processor.

• Bits [1:0] of Registers DBGBVR0 to DBGBVR(n-1) are Do Not Modify on writes and 
Read-As-Zero because these registers do not support context ID comparisons.

• The contents of the CP15 Context ID Register give the context ID value for a DBGBVR 
to match. For information on the Context ID Register, see Chapter 4 System Control.

12.4.12 Breakpoint Control Registers

The DBGBCR Register characteristics are:

Purpose Contains the necessary control bits for setting:
• breakpoints
• linked breakpoints.

Usage constraints There are no usage constraints.

Configurations Available in all processor configurations.

Attributes See Table 12-16 on page 12-25.

Figure 12-10 shows the bit assignments.

Figure 12-10 DBGBCR Registers bit assignments

Table 12-15 Breakpoint Value Register bit assignments

Bits Reset value Function

[31:0] 0x0 Breakpoint value

Reserved

M Linked BRP Reserved
Byte 

address
select

Secure state access control

Breakpoint 
address mask

Reserved Reserved

B

31 29 28 24 23 22 20 19 16 15 14 13 9 8 5 4 3 2 1 0

S

ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-24
ID092411 Non-Confidential



Debug 
Table 12-16 shows the bit assignments.

Table 12-16 Breakpoint Control Register bit assignments

Bits Name Function

[31:29] - Do not modify on writes. On reads, the value returns zero. 

[28:24] Breakpoint 
address mask

This field sets a breakpoint on a range of addresses by masking lower order address bits out of the 
breakpoint comparison.a

b00000 = no mask
b00001 = Reserved
b00010 = Reserved
b00011 = 0x00000007 mask for instruction address
b00100 = 0x0000000F mask for instruction address
b00101 = 0x0000001F mask for instruction address
...
b11111 = 0x7FFFFFFF mask for instruction address.

[23] - -

[22:20] M Meaning of DBGBVR:
b000 = instruction address match
b001 = linked instruction address match
b010 = unlinked context ID
b011 = linked context ID
b100 = instruction address mismatch
b101 = linked instruction address mismatch
b11x = Reserved.
For more information, see Table 12-17 on page 12-26

[19:16] Linked BRP 
number

The binary number encoded here indicates another BRP to link this one with.

Note
 • if a BRP is linked with itself, it is Unpredictable whether a breakpoint debug event is generated
• if this BRP is linked to another BRP that is not configured for linked context ID matching, it is 

Unpredictable whether a breakpoint debug event is generated.

[15:14] Secure state 
access control

RAZ or SBZP.

[13:9] - Do not modify on writes. On reads, the value returns zero.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-25
ID092411 Non-Confidential



Debug 
[8:5] Byte address 
select

For breakpoints programmed to match an instruction address, the debugger must write a word-aligned 
address to the DBGBVR. You can then use this field to program the breakpoint so it hits only if certain 
byte addresses are accessed.b

If the BRP is programmed for instruction address match:
b0000 = the breakpoint never hits
bxxx1 = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +0 is accessed
bxx1x = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +1 is accessed
bx1xx = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +2 is accessed
b1xxx = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +3 is accessed
b1111 = the breakpoint hits if any of the four bytes starting at address (DBGBVR & 0xFFFFFFFC) +0 is 
accessed.
If the BRP is programmed for instruction address mismatch, the breakpoint hits where the corresponding 
instruction address breakpoint does not hit, that is, the range of addresses covered by an instruction 
address mismatch breakpoint is the negative image of the corresponding instruction address breakpoint.
If the BRP is programmed for context ID comparison, this field must be set to b1111. Otherwise, 
breakpoint and watchpoint debug events might not be generated as expected.

[4:3] - -

[2:1] S Supervisor access control. The breakpoint can be conditioned on the mode of the processor:
b00 = User, System, or Supervisor
b01 = Privileged
b10 = User
b11 = any.

[0] B Breakpoint enable:
0 = Breakpoint disabled. This is the reset value.
1 = Breakpoint enabled.

a. If DBGBCR[28:24] is not set to b00000, then DBGBCR[8:5] must be set to b1111. Otherwise the behavior is Unpredictable. In addition, if 
DBGBCR[28:24] is not set to b00000, then the corresponding DBGBVR bits that are not being included in the comparison Should Be Zero. 
Otherwise the behavior is Unpredictable. If this BRP is programmed for context ID comparison, this field must be set to b00000. Otherwise 
the behavior is Unpredictable. There is no encoding for a full 32-bit mask but the same effect of a break anywhere breakpoint can be achieved 
by setting DBGBCR[22] to 1 and DBGBCR[8:5] to b0000.

b. Writing a value to DBGBCR[8:5] so that DBGBCR[8] is not equal to DBGBCR[7] or DBGBCR[6] is not equal to DBGBCR[5] has 
Unpredictable results.

Table 12-17 Meaning of DBGBVR bits [22:20]

DBGBVR[22:20] Meaning

b000 The corresponding DBGBVR[31:2] is compared against the instruction address bus and the state of the 
processor against this DBGBCR. It generates a breakpoint debug event on a joint instruction address and state 
match.

b001 The corresponding DBGBVR[31:2] is compared against the instruction address bus and the state of the 
processor against this DBGBCR. This BRP is linked with the one indicated by DBGBCR[19:16] linked BRP 
field. They generate a breakpoint debug event on a joint instruction address, context ID, and state match.

b010 The corresponding DBGBVR[31:0] is compared against CP15 Context ID Register, c13 and the state of the 
processor against this DBGBCR. This BRP is not linked with any other one. It generates a breakpoint debug 
event on a joint context ID and state match. For this BRP, DBGBCR[8:5] must be set to b1111. Otherwise it is 
Unpredictable whether a breakpoint debug event is generated.

Table 12-16 Breakpoint Control Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-26
ID092411 Non-Confidential



Debug 
12.4.13 Watchpoint Value Registers

Each DBGWVR is associated with a Watchpoint Control Register (DBGWCR). DBGWCRy is 
the corresponding register for DBGWVRy.

A pair of watchpoint registers, DBGWVRy and DBGWCRy, is called a Watchpoint Register 
Pair (WRP). DBGWVR0-7 are paired with DBGWCR0-7 to make WRP0-7.

The watchpoint value contained in the DBGWVR always corresponds to a data address and can 
be set either on:
• a data address
• a data address and context ID pair.

For a data address and context ID pair, a WRP and the BRP with context ID comparison 
capability must be linked. A debug event is generated when both the data address and the 
context ID pair match simultaneously. 

Table 12-18 shows the bit assignments.

12.4.14 Watchpoint Control Registers

The DBGWCR Register characteristics are:

Purpose Contains the necessary control bits for setting:
• watchpoints
• linked watchpoints.

Usage constraints There are no usage constraints.

Configurations Available in all processor configurations.

b011 The corresponding DBGBVR[31:0] is compared against CP15 Context ID Register, c13. This BRP links 
another BRP (of the DBGBCR[21:20]=b01 type), or WRP (with DBGWCR[20]=b1). They generate a 
breakpoint or watchpoint debug event on a joint instruction address or data address and context ID match. For 
this BRP, DBGBCR[8:5] must be set to b1111, DBGBCR[15:14] must be set to b00, and DBGBCR[2:1] must 
be set to b11. Otherwise it is Unpredictable whether a breakpoint debug event is generated.

b100 The corresponding DBGBVR[31:2] and DBGBCR[8:5] are compared against the instruction address bus and 
the state of the processor against this DBGBCR. It generates a breakpoint debug event on a joint instruction 
address mismatch and state match.

b101 The corresponding DBGBVR[31:2] and DBGBCR[8:5] are compared against the instruction address bus and 
the state of the processor against this DBGBCR. This BRP is linked with the one indicated by DBGBCR[19:16] 
linked BRP field. It generates a breakpoint debug event on a joint instruction address mismatch, state and 
context ID match.

b11x Reserved. The behavior is Unpredictable.

Table 12-17 Meaning of DBGBVR bits [22:20] (continued)

DBGBVR[22:20] Meaning

Table 12-18 Watchpoint Value Register bit assignments

Bits Function

[31:2] Watchpoint address.

[1:0] Reserved. Do not modify on writes. On reads, the value returns zero. 
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-27
ID092411 Non-Confidential



Debug 
Attributes See Table 12-19.

Figure 12-11shows the bit assignments.

Figure 12-11 DBGWCR Register bit assignments

Table 12-19 shows the bit assignments.

Reserved

Linked BRP Byte address select L/S P W

Reserved

Watchpoint 
address mask

31 21 20 19 16 15 5 3 2 1

E L/S S

24 4 014 1329 28 23

Secure state access control

12

Reserved

Table 12-19 DBGWCR Register bit assignments

Bits Name Function

[31:29] - Do not modify on writes. On reads, the value returns zero.

[28:24] Watchpoint 
address 
mask

This field watches a range of addresses by masking lower order address bits out of the watchpoint 
comparison.
b00000 = no mask
b00001 = Reserved
b00010 = Reserved
b00011 = 0x00000007 mask for data address
b00100 = 0x0000000F mask for data address
b00101 = 0x0000001F mask for data address
...
b11111 = 0x7FFFFFFF mask for data address.

Note
 • If DBGWCR[28:24] is not set to b00000, then DBGWCR[12:5] must be set to b11111111. Otherwise 

the behavior is Unpredictable.
• If DBGWCR[28:24] is not set to b00000, then the corresponding DBGWVR bits that are not being 

included in the comparison Should Be Zero. Otherwise the behavior is Unpredictable.
• To watch for a write to any byte in an 8-byte aligned object of size 8 bytes, ARM recommends that a 

debugger sets DBGWCR[28:24] to b00111, and DBGWCR[12:5] to b11111111. This is compatible 
with both ARMv7 debug compliant implementations that have an 8-bit DBGWCR[12:5] and with 
those that have a 4-bit DBGWCR[8:5] byte address select field.

[23:21] - Do not modify on writes. On reads, the value returns zero.

[20] E Enable linking bit:
0 = linking disabled
1 = linking enabled.
When this bit is set, this watchpoint is linked with the context ID holding BRP selected by the linked BRP 
field.

[19:16] Linked 
BRP

Linked BRP number. The binary number encoded here indicates a context ID holding BRP to link this WRP 
with. If this WRP is linked to a BRP that is not configured for linked context ID matching, it is Unpredictable 
whether a watchpoint debug event is generated.

[15:14] Secure state 
access 
control

RAZ or SBZP.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-28
ID092411 Non-Confidential



Debug 
12.4.15 Operating System Lock Status Register

The DBGOSLSR Register characteristics are:

Purpose Contains status information about the locked debug registers.

Usage constraints The DBGOSLSR is a read-only register.

Configurations Available in all processor configurations.

Attributes See Table 12-20 on page 12-30.

Figure 12-12 on page 12-30 shows the bit assignments.

[13] - Appear as zero when read. Do not modify on writes.

[12:5] Byte 
address 
select

The DBGWVR is programmed with word-aligned address. You can use this field to program the watchpoint 
so it only hits if certain byte addresses are accessed:
b00000000 The watchpoint never hits.
bxxxxxxx1 The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFFC) +0 is accessed.
bxxxxxx1x The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFFC) +1 is accessed.
bxxxxx1xx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFFC) +2 is accessed.
bxxxx1xxx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFFC) +3 is accessed.
bxxx1xxxx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFF8) +4 is accessed.
bxx1xxxxx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFF8) +5 is accessed.
bx1xxxxxx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFF8) +6 is accessed.
b1xxxxxxx The watchpoint hits if the byte at address (DBGWVR[31:0] & 0xFFFFFFF8) +7 is accessed.

[4:3] L/S Load/store access. The watchpoint can be conditioned to the type of access:
b00 = Reserved
b01 = load, load exclusive, or swap
b10 = store, store exclusive or swap
b11 = either.
A SWP or SWPB triggers on load, store, or either. A load exclusive instruction triggers on load or either. A store 
exclusive instruction triggers on store or either, whether it succeeds or not.

[2:1] S Privileged access control. The watchpoint can be conditioned to the privilege of the access:
b00 = reserved
b01 = Privileged, match if the processor does a privileged access to memory
b10 = User, match only on non-privileged accesses
b11 = either, match all accesses.

Note
 For all cases, the match refers to the privilege of the access, not the mode of the processor.

[0] W Watchpoint enable:
0 = Watchpoint disabled. This is the reset value.
1 = Watchpoint enabled.

Table 12-19 DBGWCR Register bit assignments (continued)

Bits Name Function
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-29
ID092411 Non-Confidential



Debug 
Figure 12-12 DBGOSLSR Register bit assignments

Table 12-20 shows the bit assignments.

12.4.16 Authentication Status Register

The DBGAUTHSTATUS Register characteristics are:

Purpose Reads the current values of the configuration inputs that determine the 
debug permission level.

Usage constraints The DBGAUTHSTATUS Register is read-only.

Configurations Available in all processor configurations.

Attributes See Table 12-21.

Figure 12-13 shows the bit assignments.

Figure 12-13 DBGAUTHSTATUS Register bit assignments

Table 12-21 shows the bit assignments.

31 0

Reserved

1

Lock implemented bit

Table 12-20 DBGOSLSR Register bit assignments

Bits Name Function

[31:1] - RAZ.

[0] Lock implemented bit Indicates whether the OS lock functionality is implemented:
0 = OS lock not implemented.

31 03

Reserved

45678

Secure non-invasive debug features implemented

Secure non-invasive debug features enabled

Secure invasive debug features implemented

Secure invasive debug features enabled
Non-secure debug features

Table 12-21 DBGAUTHSTATUS Register bit assignments

Bits Name Value Function

[31:8] - - RAZ

[7] Secure non-invasive debug features implemented 0b1 Implemented

[6] Secure non-invasive debug features enabled DBGENm || NIDENm Non-invasive debug enable field
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-30
ID092411 Non-Confidential



Debug 
12.4.17 Device Power-down and Reset Control Register

The DBGPRCR Register characteristics are:

Purpose Controls reset and power-down related functionality.

Usage constraints The DBGPRCR Register is read-write with more restricted access to some 
bits.

Configurations Available in all processor configurations.

Attributes See Table 12-22.

Figure 12-14 shows the bit assignments.

Figure 12-14 DBGPRCR Register bit assignments

Table 12-22 shows the bit assignments.

[5] Secure invasive debug features implemented 0b1 Implemented

[4] Secure invasive debug features enabled DBGENm Invasive debug enable field

[3:0] Non-secure debug featuresa 0x0 Not implemented

a. The Cortex-R5 processor does not implement the Security Extensions, so all the debug features are considered secure.

Table 12-21 DBGAUTHSTATUS Register bit assignments (continued)

Bits Name Value Function

31 03

Reserved

2 1

Hold internal reset  
Force internal reset

No Power-down

Table 12-22 DBGPRCR Register bit assignments

Bits Name Function

[31:3] - Do not modify on writes. On reads, the value returns zero.

[2] Hold internal 
reset

Hold internal reset bit. This bit can be used to prevent the processor from running again before the debugger 
detects a power-down event and restores the state of the debug registers in the processor. This bit does not 
have any effect on initial system power-up, because nSYSPORESET clears it.
0 = Do not hold internal reset on power-up or warm reset. This is the reset value.
1 = Hold the processor non-debug logic in reset on warm reset until this flag is cleared.

[1] Force 
internal reset

When a 1 is written to this bit, the processor asserts the DBGRSTREQm output for four cycles. You can 
connect this output to an external reset controller that, in turn, resets the processor.

[0] No 
power-down

When set to 1, the DBGNOPWRDWN output signal is HIGH. This output connects to the system power 
controller and is interpreted as a request to operate in emulate mode, if the system supports this functionality. 
In this mode, the processor is not actually powered down when requested by software or hardware 
handshakes. This mode is useful when debugging applications on top of working operating systems.
0 = DBGNOPWRDWN is LOW. This is the reset value
1 = DBGNOPWRDWN is HIGH.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-31
ID092411 Non-Confidential



Debug 
12.4.18 Device Power-down and Reset Status Register

The DBGPRSR Register characteristics are:

Purpose Provides information about the reset and power-down state of the 
processor.

Usage constraints The DBGPRSR Register is a read-only register, with reads of the register 
also resetting some register bits.

Configurations Available in all processor configurations.

Attributes See Table 12-23.

Figure 12-15 shows the bit assignments.

Figure 12-15 DBGPRSR Register bit assignments

Table 12-23 shows the bit assignments.

31 03

Reserved

2 14

Sticky reset status
Reset status  

Sticky power-down status
Power-down status

Table 12-23 DBGPRSR Register bit assignments

Bits Name Function

[31:4] - Do not modify on writes. On reads, the value returns zero.

[3] Sticky reset status Sticky reset status bit. This bit is cleared on read.
0 = the processor has not been reset since the last time this register was read. This is the reset value.
1 = the processor has been reset since the last time this register was read.
This sticky bit is set to 1 when nRESETm is asserted. This bit is reset to 0 by PRESETDBGmn.

[2] Reset status Reset status bit:
0 = the processor is not held in reset
1 = the processor is held in reset.
This bit reads 1 when nRESETm is asserted.

[1] Sticky power-down 
statusa

Indicates if the core power domain has been powered down since the DBGPRCR was last read.
0 = the CPU has not been powered down since the last read. This is the reset value.
1 = the CPU has been powered down since the last read.
If this bit is 1: 
• The contents of the core domain debug registers have been lost and must be reprogrammed. 
• Debug-APB transactions that access core domain debug registers receive an error response. 
This bit is cleared to 0 on a read.

[0] Power-up statusa Indicates the status of the core power domain.
0 = the CPU is powered-down, that is, it is in Dormant or Shutdown mode. Core-domain debug 
registers cannot be accessed.
1 = the CPU is powered-up, that is, it is in Run or Standby mode. All debug registers can be accessed.

a. If you are implementing a Split/Lock configuration, contact ARM for more information about the functionality of this bit.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-32
ID092411 Non-Confidential



Debug 
12.5 Management registers
The Management Registers define the standardized set of registers that all CoreSight 
components implement. This section describes these registers.

Table 12-24 shows the contents of the Management Registers for the processor debug unit.

12.5.1 Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the 
corresponding CP15 Main ID Register and Feature ID Registers. See Chapter 4 System Control 
for more information about the information contained in these registers.

Table 12-25 shows the offset value, register number, mnemonic, and description that are 
associated with each Process ID Register.

Table 12-24 Management Registers

Offset 
(hex)

Register 
number Access Mnemonic Function

0xD00-0xDFC 832-895 R - See Processor ID Registers.

0xF00 960 RW DBGITCTRL See Integration Mode Control Register (DBGITCTRL) on 
page 13-8.

0xFA0 1000 DBGCLAIMSET See Claim Tag Set Register on page 12-34.

0xFA4 1001 DBGCLAIMCLR See Claim Tag Clear Register on page 12-35.

0xFB0 1004 W DBGLAR See Lock Access Register on page 12-35.

0xFB4 1005 R DBGLSR See Lock Status Register on page 12-36.

0xFB8 1006 R DBGAUTHSTATU
S

See Authentication Status Register on page 12-30.

0xFB8-0xFC4 1006-1009 R - Reserved.

0xFC8 1010 R DBGDEVID Device Identifier. Reserved.

0xFCC 1011 R DBGDEVTYPE See Device Type Register on page 12-36.

0xFD0-0xFFC 1012-1023 R - See Debug Identification Registers on page 12-37.

Table 12-25 Processor Identifier Registers

Offset (hex) Register number Mnemonic Function

0xD00 832 MIDR Main ID Register

0xD04 833 CTR Cache Type Register

0xD08 834 TCMTR TCM Type Register

0xD0C 835 - Alias of MIDR

0xD10 836 MPUIR MPU Type Register

0xD14 837 MPIDR Multiprocessor Affinity Register

0xD18-0xD1C 838-839 - Alias of MIDR

0xD20 840 ID_PFR0 Processor Feature Register 0
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-33
ID092411 Non-Confidential



Debug 
12.5.2 Claim Registers

The Claim Tag Set Register and the Claim Tag Clear Register enable an external debugger to 
claim debug resources. 

Claim Tag Set Register

The DBGCLAIMSET Register characteristics are:

Purpose Enables an external debugger to claim debug resources.

Usage constraints The DBGCLAIMSET Register is a read/write register, in which:
• the CLAIM bits are always RAO
• writing 0 to a CLAIM bit has no effect.

Configurations Available in all processor configurations.

Attributes See Table 12-26 on page 12-35.

Figure 12-16 shows the bit assignments.

Figure 12-16 DBGCLAIMSET Register bit assignments

0xD24 841 ID_PFR1 Processor Feature Register 1

0xD28 842 ID_DFR0 Debug Feature Register 0

0xD2C 843 ID_AFR0 Auxiliary Feature Register 0

0xD30 844 ID_MMFR0 Processor Feature Register 0

0xD34 845 ID_MMFR1 Processor Feature Register 1

0xD38 846 ID_MMFR2 Processor Feature Register 2

0xD3C 847 ID_MMFR3 Processor Feature Register 3

0xD40 848 ID_ISAR0 ISA Feature Register 0

0xD44 849 ID_ISAR1 ISA Feature Register 1

0xD48 850 ID_ISAR2 ISA Feature Register 2

0xD4C 851 ID_ISAR3 ISA Feature Register 3

0xD50 852 ID_ISAR4 ISA Feature Register 4

0xD54 853 ID_ISAR5 ISA Feature Register 5

0xD58-0xDFC 854-895 - Reserved, RAZ/SBZP

Table 12-25 Processor Identifier Registers (continued)

Offset (hex) Register number Mnemonic Function

31 0

Reserved

78

Claim tag set
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-34
ID092411 Non-Confidential



Debug 
Table 12-26 shows the bit assignments.

Writing b1 to a specific claim tag set bit sets that claim tag. Writing b0 to a specific claim tag 
bit has no effect. This register always reads 0xFF, indicating eight claim tags are implemented.

Claim Tag Clear Register 

The DBGCLAIMCLR Register characteristics are:

Purpose Enables an external debugger to:
•  read debug resources
•  clear debug resources.

Usage constraints The DBGCLAIMCLR Register is a read/write register, in which:
• Reading this register returns the current claim tag value
• writing 0 to a CLAIM bit has no effect
• writing 1 to a specific claim tag clear bit clears that claim tag.

Configurations Available in all processor configurations.

Attributes See Table 12-27.

Figure 12-16 on page 12-34 shows the bit assignments.

Figure 12-17 DBGCLAIMCLR Register bit assignments

Table 12-27 shows the bit assignments.

12.5.3 Lock Access Register

The DBGLAR is a write-only register that controls writes to the debug registers. The purpose 
of the DBGLAR is to reduce the risk of accidental corruption to the contents of the debug 
registers. It does not prevent all accidental or malicious damage. Because the state of the 
DBGLAR is in the debug power domain, it is not lost when the processor powers down.

DBGLAR [31:0] contain a key that controls the lock status. To unlock the debug registers, write 
a 0xC5ACCE55 key to this register. To lock the debug registers, write any other value. Accesses to 
locked debug registers are ignored. The lock is set on reset.

Table 12-26 DBGCLAIMSET Register bit assignments

Bits Name Function

[31:8] - RAZ or SBZP.

[7:0] Claim tag set RAO. Sets claim tags on writes.

31 0

Reserved

78

Claim tag clear

Table 12-27 DBGCLAIMCLR Register bit assignments

Bit Name Function

[31:8] - RAZ or SBZP.

[7:0] Claim tag clear R/W. Reset value is 0x00.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-35
ID092411 Non-Confidential



Debug 
12.5.4 Lock Status Register

The DBGLSR Register characteristics are:

Purpose Returns the current lock status of the debug registers.

Usage constraints The DBGLSR is:
•  a read-only register
• only defined in the memory-mapped interface

Configurations Available in all processor configurations.

Attributes See Table 12-28.

Figure 12-18 shows the bit assignments.

Figure 12-18 DBGLSR Register bit assignments

Table 12-28 shows the bit assignments.

12.5.5 Device Type Register

The DBGDEVTYPE Register characteristics are:

Purpose Indicates the type of debug component.

Usage constraints The DBGDEVTYPE Register is a read-only register.

Configurations Available in all processor configurations.

Attributes See Table 12-29 on page 12-37.

Figure 12-19 on page 12-37 shows the bit assignments.

3131 0

Reserved

123

32-bit access
Locked bit

Lock implemented bit

Table 12-28 DBGLSR Register bit assignments

Bits Name Function

[31:3] - Do not modify on writes. On reads, the value returns zero.

[2] 32-bit access Indicates that a 32-bit access is required to write the key to the DBGLAR. This bit always reads 0.

[1] Locked bit Locked bit:
0 = Writes are permitted.
1 = Writes are ignored. This is the reset value.

[0] Lock implemented bit Indicates that the OS lock functionality is implemented. This bit always reads 1.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-36
ID092411 Non-Confidential



Debug 
Figure 12-19 DBGDEVTYPE Register bit assignments

Table 12-29 shows the bit assignments.

12.5.6 Debug Identification Registers

The Debug Identification Registers are read-only registers that consist of the Peripheral 
Identification Registers and the Component Identification Registers. The Peripheral 
Identification Registers provide standard information that all CoreSight components require. 
Only bits [7:0] of each register are used. The remaining bits Read-As-Zero.

The Component Identification Registers identify the processor as a CoreSight component. Only 
bits [7:0] of each register are used, the remaining bits Read-As-Zero. The values in these 
registers are fixed.

Table 12-30 shows the offset value, register number, and description that are associated with 
each Peripheral Identification Register.

3131 0

Reserved

4

Sub type Main class

8 7 3

Table 12-29 DBGDEVTYPE Register bit assignments

Bits Name Function

[31:8] - Do not modify on writes. On reads, the value returns zero.

[7:4] Subtype 0x1, indicates that the sub-type of the device is processor.

[3:0] Main class 0x5, indicates that the main class of the device is debug logic.

Table 12-30 Peripheral Identification Registers

Offset (hex) Register number Function

0xFD0 1012 Peripheral Identification Register 4

0xFD4 1013 Reserved

0xFD8 1014 Reserved

0xFDC 1015 Reserved

0xFE0 1016 Peripheral Identification Register 0

0xFE4 1017 Peripheral Identification Register 1

0xFE8 1018 Peripheral Identification Register 2

0xFEC 1019 Peripheral Identification Register 3
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-37
ID092411 Non-Confidential



Debug 
Table 12-31 shows fields that are in the Peripheral Identification Registers.

Table 12-32 shows how the bit values correspond with the Peripheral ID Register 0 functions.

Table 12-33 shows how the bit values correspond with the Peripheral ID Register 1 functions.

Table 12-31 Fields in the Peripheral Identification Registers

Field Size Function

4KB Count 4 bits Indicates the Log2 of the number of 4KB blocks occupied by the debug device. The processor debug 
registers occupy a single 4KB block, therefore this field is always 0x0.

JEP106 
Identity Code

4+7 bits Identifies the designer of the processor. This field consists of a 4-bit continuation code and a 7-bit identity 
code. Because the processor is designed by ARM, the continuation code is 0x4 and the identity code is 
0x3B. For more information see JEP106M, Standard Manufacture’s Identification Code.

Part number 12 bits Indicates the part number of the processor. The part number for the processor is 0xC15.

Revision 4 bits Indicates the major and minor revision of the product. The major revision contains functionality changes 
and the minor revision contains bug fixes for the product. The revision number starts at 0x0 and increments 
by 1 at both major and minor revisions:
0x0 = r0p0
0x1 = r1p0
0x2 = r1p1
0x3 = r1p2.

RevAnd 4 bits Indicates the manufacturer revision number. This number starts at 0x0 and increments by the integrated 
circuit manufacturer on metal fixes. For the Cortex-R5 processor, the initial value is 0x0 but this value can 
be changed by the manufacturer.

Customer 
modified

4 bits Indicates an endorsed modification to the device. On this processor the value is always 0x0.

Table 12-32 Peripheral ID Register 0 functions

Bits Value Function

[31:8] - Reserved

[7:0] 0x15 Indicates bits [7:0] of the Part number for the processor

Table 12-33 Peripheral ID Register 1 functions

Bits Value Function

[31:8] - Reserved

[7:4] 0xB Indicates bits [3:0] of the JEDEC JEP106 Identity Code

[3:0] 0xC Indicates bits [11:8] of the Part number for the processor
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-38
ID092411 Non-Confidential



Debug 
Table 12-34 shows how the bit values correspond with the Peripheral ID Register 2 functions.

Table 12-35 shows how the bit values correspond with the Peripheral ID Register 3 functions.

Table 12-36 shows how the bit values correspond with the Peripheral ID Register 4 functions.

Table 12-37 shows the offset value, register number, and value that are associated with each 
Component Identification Register.

Table 12-34 Peripheral ID Register 2 functions

Bits Value Function

[31:8] - Reserved.

[7:4] - Indicates the revision number for the Cortex-R5 processor. This is the major revision number n in the 
rn part of the rnpn description of the product revision status.

[3] 0x1 This field is always set to 1. It indicates that the processor uses a JEP 106 identity code.

[2:0] 0x3 Indicates bits [6:4] of the JEDEC JEP106 Identity Code.

Table 12-35 Peripheral ID Register 3 functions

Bits Value Function

[31:8] - Reserved.

[7:4] 0x0 Indicates the manufacturer revision number. This value changes based on the metal fixes made by the manufacturer.

[3:0] 0x0 Customer modified. See Table 12-31 on page 12-38.

Table 12-36 Peripheral ID Register 4 functions

Bits Value Function

[31:8] - Reserved.

[7:4] 0x0 Indicates the number of blocks the debug component occupies. This field is always set to 0.

[3:0] 0x4 Indicates the JEDEC JEP106 continuation code. For the processor, this value is 4.

Table 12-37 Component Identification Registers

Offset (hex) Register number Value Description

0xFF0 1020 0x0D Component Identification Register 0

0xFF4 1021 0x90 Component Identification Register 1

0xFF8 1022 0x05 Component Identification Register 2

0xFFC 1023 0xB1 Component Identification Register 3
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-39
ID092411 Non-Confidential



Debug 
12.6 Debug events
A processor responds to a debug event in one of the following ways:
• ignores the debug event
• takes a debug exception
• enters debug halt state.

This section describes:
• Software debug event
• Halting debug event on page 12-41.
• Behavior of the processor on debug events on page 12-41
• Debug event priority on page 12-41
• Watchpoint debug events on page 12-41.

12.6.1 Software debug event

A software debug event is any of the following:

• A watchpoint debug event. This occurs when:
— The data address for a load or store matches the watchpoint value.
— All the conditions of the corresponding DBGWCR match.
— The watchpoint is enabled.
— The linked context ID-holding BRP, if any, is enabled and its value matches the 

context ID in CP15 c13. See Chapter 4 System Control.
— The instruction that initiated the memory access is committed for execution. 
Watchpoint debug events are only generated if the instruction passes its condition code.

• A breakpoint debug event. This occurs when:
— An instruction was fetched and the instruction address or the CP15 Context ID 

register c13 matched the breakpoint value.
— At the same time the instruction was fetched, all the conditions of the corresponding 

DBGBCR for unlinked context ID breakpoint generation matched the instruction 
fetch.

— The breakpoint is enabled.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.

• A BKPT debug event. This occurs when a BKPT instruction is committed for execution. 
BKPT is an unconditional instruction.

• A vector catch debug event. This occurs when:
— An instruction was prefetched and the address matched a vector location address. 

This includes any kind of prefetch, not only the ones because of exception entry.
— At the same time the instruction was fetched, the corresponding bit of the DBGVCR 

was set, that is, the vector catch is enabled.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-40
ID092411 Non-Confidential



Debug 
12.6.2 Halting debug event

The debugger or the system can cause the processor to enter into debug state by triggering any 
of the following halting debug events:
• assertion of the EDBGRQm signal, an External Debug Request
• write to the DBGDRCR[0] Halt Request control bit.

When EDBGRQm is asserted while DBGENm is HIGH, the device asserting this signal must 
hold it until the processor enters debug state, that is, until DBGACKm is asserted. The state of 
the processor pipeline determines how long this takes. If the request is not held in this way, the 
behavior of the processor is Unpredictable. For DBGDRCR[0] halting debug events, the 
processor records them internally until it is in a state and mode so that they can be taken.

12.6.3 Behavior of the processor on debug events

This section describes how the processor behaves on debug events while not in debug state. See 
Debug state on page 12-45 for information on how the processor behaves while in debug state. 
When the processor is in Monitor debug-mode, Prefetch Abort and Data Abort vector catch 
debug events are ignored. All other software debug events generate a debug exception such as 
Data Abort for watchpoints, and Prefetch Abort for anything else.

When debug is disabled, the BKPT instruction generates a debug exception, Prefetch Abort. All 
other software debug events are ignored.

When DBGENm is LOW, debug is disabled regardless of the value of DBGDSCR[15:14].

Table 12-38 shows the behavior of the processor on debug events.

12.6.4 Debug event priority

Breakpoint, instruction address or CID match, vector catch, and halting debug events have the 
same priority. If more than one of these events occurs on the same instruction, it is 
Unpredictable which event is taken.

Breakpoint, instruction address or CID match and vector catch cancel the instruction that they 
occur on, therefore a watchpoint cannot be taken on such an instruction.

12.6.5 Watchpoint debug events

A synchronous watchpoint exception has similar behavior to a synchronous data abort 
exception:
• the processor sets R14_abt to the address of the instruction to return to plus 0x08.
• the processor does not complete the watchpointed instruction.

If the watchpointed access is subject to a synchronous data abort, then the synchronous abort 
takes priority over the watchpoint because it is a higher priority exception.

Table 12-38 Processor behavior on debug events

DBGENm DBGDSCR[15:14] Debug mode Action on software debug 
event

Action on halting 
debug event

0 bxx Debug disabled Ignore or Prefetch Abort (for BKPT) Ignore

1 b00 None Ignore or Prefetch Abort (for BKPT) Debug state entry

1 bx1 Halting Debug state entry Debug state entry

1 b10 Monitor Debug exception Debug state entry
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-41
ID092411 Non-Confidential



Debug 
12.7 Debug exception
The processor takes a debug exception when a software debug event occurs while in Monitor 
debug-mode. Prefetch Abort and Data Abort Vector catch debug events are ignored. The debug 
software must carefully program certain debug events to prevent the processor from entering an 
unrecoverable state. If the processor takes a debug exception because of a breakpoint, BKPT, or 
vector catch debug event, the processor performs the following actions:

• sets the DBGDSCR[5:2] method-of-entry bits to indicate that a breakpoint occurred

• sets the CP15 IFSR and IFAR registers as described in Effect of debug exceptions on CP15 
registers and DBGWFAR on page 12-43

• performs the same sequence of actions as in a Prefetch Abort exception by:
— updating the SPSR_abt with the saved CPSR
— changing the CPSR to abort mode and the state indicated by the TE and EE bits with 

normal interrupts and asynchronous aborts disabled
— setting R14_abt as for a regular Prefetch Abort exception, that is, this register holds 

the address of the cancelled instruction plus 0x04
— setting the PC to the appropriate Prefetch Abort vector.

Note
 The Prefetch Abort handler is responsible for checking the IFSR to determine if a debug 
exception or other kind of Prefetch Abort exception caused the exception entry. If the cause is 
a debug exception, the Prefetch Abort handler must branch to the debug monitor. The R14_abt 
register holds the address of the instruction to restart.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions:

• sets the DBGDSCR[5:2] method-of-entry bits to indicate that a synchronous watchpoint 
occurred

• sets the CP15 DFSR, DFAR, and DBGWFAR registers as described in Effect of debug 
exceptions on CP15 registers and DBGWFAR on page 12-43

• performs the same sequence of actions as in a Data Abort exception by:
— updating the SPSR_abt with the saved CPSR
— changing the CPSR to the state indicated by the TE and EE bits with normal 

interrupts and asynchronous aborts disabled
— setting R14_abt as a regular Data Abort exception, that is, this register gets the 

address of the cancelled instruction plus 0x08
— setting the PC to the appropriate Data Abort vector.

Note
 The Data Abort handler must check the DFSR to determine if the exception entry was caused 
by a Debug exception or other kind of Data Abort exception. If the cause is a Debug exception, 
the Data Abort handler must branch to the debug monitor. The R14_abt register holds the 
address of the instruction to restart.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-42
ID092411 Non-Confidential



Debug 
Table 12-39 shows the values in the link register after exceptions.

The following sections describe:
• Effect of debug exceptions on CP15 registers and DBGWFAR
• Avoiding unrecoverable states on page 12-44.

12.7.1 Effect of debug exceptions on CP15 registers and DBGWFAR

The four CP15 registers that record abort information are:
1. Data Fault Address Register (DFAR)
2. Instruction Fault Address Register (IFAR) 
3. Instruction Fault Status Register (IFSR)
4. Data Fault Status Register (DFSR).

For more information on these registers, see Chapter 4 System Control.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions on these registers:

• it does not change the IFSR or IFAR

• it updates the DFSR with the debug event encoding

• it writes an Unpredictable value to the DFAR

• it updates the DBGWFAR with the address of the instruction that accessed the 
watchpointed address, plus a processor state dependent offset:
— + 8 for ARM state
— + 4 for Thumb state.

If the processor takes a debug exception because of a breakpoint, BKPT, or vector catch debug 
event, the processor performs the following actions on these registers:
• it updates the IFSR with the debug event encoding
• it writes an Unpredictable value to the IFAR
• it does not change the DFSR, DFAR, or DBGWFAR.

Table 12-39 Values in link register after exceptions

Cause of fault ARM Thumb Return address (RAa) meaning

a. This is the address of the instruction that the processor can execute first on debug exception return. The 
address of the access that hit the watchpoint is in the DBGWFAR.

Breakpoint RA+4 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+8 Watchpointed instruction address

BKPT instruction RA+4 RA+4 BKPT instruction address

Vector catch RA+4 RA+4 Vector address

Prefetch Abort RA+4 RA+4 Address of the instruction where the execution can resume

Data Abort RA+8 RA+8 Address of the instruction where the execution can resume
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-43
ID092411 Non-Confidential



Debug 
12.7.2 Avoiding unrecoverable states

The processor ignores vector catch debug events on the Prefetch or Data Abort vectors while in 
Monitor debug-mode because these events would otherwise put the processor in an 
unrecoverable state.

The debuggers must avoid other similar cases by following these rules, that apply only if the 
processor is in Monitor debug-mode:

• if DBGBCR[22:20] is set to b010, and unlinked context ID breakpoint is selected, then 
the debugger must program DBGBCR[2:1] for the same breakpoint as stated in this 
section

• if DBGBCR[22:20] is set to b100 or b101, and instruction address mismatch breakpoint 
is selected, then the debugger must program DBGBCR[2:1] for the same breakpoint as 
stated in this section.

The debugger must write DBGBCR[2:1] for the same breakpoint as either b00 or b10, that 
selects either match in only USR, SYS, or SVC modes or match in only USR mode, 
respectively. The debugger must not program either b01, that is, match in any Privileged mode, 
or b11, that is, match in any mode.

You must only request the debugger to write b00 to DBGBCR[2:1] if you know that the abort 
handler does not switch to one of the USR, SYS, or SVC mode before saving the context that 
might be corrupted by a later debug event. You must also be careful about requesting the 
debugger to set a breakpoint or BKPT debug event inside a Prefetch Abort or Data Abort 
handler, or a watchpoint debug event on a data address that any of these handlers might access.

In general, you must only set breakpoint or BKPT debug events inside an abort handler after it 
saves the abort context. You can avoid breakpoint debug events in abort handlers by setting 
DBGBCR[2:1] as previously described.

If the code being debugged is not running in a Privileged mode, you can prevent watchpoint 
debug events in abort handlers by setting DBGWCR[2:1] to b10 for match only non-privileged 
accesses.

Failure to follow these guidelines can lead to debug events occurring before the handler is able 
to save the context of the abort. This causes the corresponding registers to be overwritten, and 
results in Unpredictable software behavior.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-44
ID092411 Non-Confidential



Debug 
12.8 Debug state
The debug state enables an external agent, usually a debugger, to control the processor following 
a debug event. While in debug state, the processor behaves as follows:
• The DBGDSCR[0] core halted bit is set.
• The DBGACKm signal is asserted, see DBGACKm on page 12-51.
• The DBGDSCR[5:2] method of entry bits are set appropriately.
• The processor is halted. The pipeline is flushed and no instructions are fetched.
• The processor does not change the execution mode. The CPSR is not altered.
• Exceptions are treated as described in Exceptions in debug state on page 12-48.
• Interrupts are ignored.
• New debug events are ignored.

The following sections describe:
• Entering debug state
• Behavior of the PC and CPSR in debug state on page 12-46
• Executing instructions in debug state on page 12-46
• Writing to the CPSR in debug state on page 12-47
• Privilege on page 12-47
• Accessing registers and memory on page 12-47
• Coprocessor instructions on page 12-47
• Effect of debug state on non-invasive debug on page 12-48
• Effects of debug events on processor registers on page 12-48
• Exceptions in debug state on page 12-48
• Leaving debug state on page 12-49.

12.8.1 Entering debug state

When a debug event occurs while the processor is in Halting debug-mode, it switches to a 
special state called debug state so the debugger can take control. You can configure Halting 
debug-mode by setting DBGDSCR[14].

If a halting debug event occurs, the processor enters debug state even when Halting debug-mode 
is not configured. While the processor is in debug state, the PC does not increment on instruction 
execution. If the PC is read at any point after the processor has entered debug state, but before 
an explicit PC write, it returns a value as described in Table 12-40, depending on the previous 
state and the type of debug event.

Table 12-40 shows the read PC value after debug state entry for different debug events.

Table 12-40 Read PC value after debug state entry

Debug event ARM Thumb Return address (RA) meaning

Breakpoint RA+8 RA+4 Breakpointed instruction address.

Watchpoint RA+8 RA+4 Watchpointed instruction address.

BKPT instruction RA+8 RA+4 BKPT instruction address.

Vector catch RA+8 RA+4 Vector address.

External debug request signal activation RA+8 RA+4 Address of the instruction where the execution resumes.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-45
ID092411 Non-Confidential



Debug 
12.8.2 Behavior of the PC and CPSR in debug state

The behavior of the PC and CPSR registers while the processor is in debug state is as follows:

• The PC is frozen on entry to debug state. That is, it does not increment on the execution 
of ARM instructions. However, the processor still updates the PC as a response to 
instructions that explicitly modify the PC.

• If the PC is read after the processor has entered debug state, it returns a value as described 
in Table 12-40 on page 12-45, depending on the previous state and the type of debug 
event.

• If the debugger executes a sequence for writing a certain value to the PC and subsequently 
it forces the processor to restart without any additional write to the PC or CPSR, the 
execution starts at the address corresponding to the written value.

• If the debugger forces the processor to restart without having performed a write to the PC, 
the restart address is Unpredictable.

• If the debugger writes to the CPSR, subsequent reads from the PC return an Unpredictable 
value, and if it forces the processor to restart without having performed a write to the PC, 
the restart address is Unpredictable. However, CPSR reads after a CPSR write return the 
written value.

• If the debugger writes to the PC, subsequent reads from the PC return an Unpredictable 
value.

• If the debugger forces the processor to execute an instruction that writes to the PC and this 
instruction fails its condition codes, the PC is written with an Unpredictable value. That 
is, if the debugger forces the processor to restart, the restart address is Unpredictable. 
Also, if the debugger reads the PC, the read value is Unpredictable.

• While the processor is in debug state, the CPSR does not change unless written to by an 
instruction. In particular, the CPSR IT execution state bits do not change on instruction 
execution. The CPSR IT execution state bits do not have any effects on instruction 
execution.

• If the processor executes a data processing instruction with Rd==R15 and S==0, then 
alu-out[0] must equal the current value of the CPSR T bit, otherwise the processor 
behavior is Unpredictable.

12.8.3 Executing instructions in debug state

In debug state, the processor executes instructions issued through the Instruction Transfer 
Register (DBGITR). Before the debugger can force the processor to execute any instruction, it 
must enable this feature through DBGDSCR[13].

While the processor is in debug state, it always decodes instructions from the DBGITR as per 
the ARM instruction set, regardless of the value of the T and J bits of the CPSR.

Debug state entry request command RA+8 RA+4 Address of the instruction where the execution resumes.

OS unlock event RA+8 RA+4 Address of the instruction where the execution resumes.

CTI debug request signal RA+8 RA+4 Address of the instruction where the execution resumes.

Table 12-40 Read PC value after debug state entry (continued)

Debug event ARM Thumb Return address (RA) meaning
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-46
ID092411 Non-Confidential



Debug 
The following restrictions apply to instructions executed through the DBGITR while in debug 
state:

• with the exception of branch instructions and instructions that modify the CPSR, the 
processor executes any ARM instruction in the same manner as if it was not in debug state

• the branch instructions B, BL, BLX(1), and BLX(2) are Unpredictable

• certain instructions that normally update the CPSR are Unpredictable

• instructions that load a value into the PC from memory are Unpredictable.

12.8.4 Writing to the CPSR in debug state

The only instruction that can update the CPSR while in debug state is the MSR instruction. All 
other ARMv7 instructions that write to the CPSR are Unpredictable, that is, the BX, BXJ, SETEND, 
CPS, RFE, LDM(exception return), and data processing instructions with Rd==R15 and S==1.

The behavior of the CPSR forms of the MSR and MRS instructions in debug state is different to their 
behavior in normal state:

• When not in debug state, an MSR instruction that modifies the execution state bits in the 
CPSR is Unpredictable. However, in debug state an MSR instruction can update the 
execution state bits in the CPSR. An Instruction Synchronization Barrier (ISB) sequence 
must follow a direct modification of the execution state bits in the CPSR by an MSR 
instruction.

• When not in debug state, an MRS instruction reads the CPSR execution state bits as zeros. 
However, in debug state an MRS instruction returns the actual values of the execution state.

The debugger must execute an ISB sequence after it writes to the CPSR execution state bits using 
an MSR instruction. If the debugger reads the CPSR using an MRS instruction after a write to any 
of these bits, but before an ISB sequence, the value that MRS returns is Unpredictable. Similarly, 
if the debugger forces the processor to leave debug state after an MSR writes to the execution state 
bits, but before any ISB sequence, the behavior of the processor is Unpredictable.

12.8.5 Privilege

When the processor is in debug state, ARM instructions issued through the DBGITR are subject 
to different rules about whether they can perform privileged actions. The general rule is that all 
instructions and operations are permitted in debug state.

12.8.6 Accessing registers and memory

The processor always accesses register banks and memory as indicated by the CPSR mode bits, 
in both normal and debug state. For example, if the CPSR mode bits indicate the processor is in 
User mode, ARM register reads and returns the User mode banked registers, and memory 
accesses are presented to the MPU as not privileged.

12.8.7 Coprocessor instructions

CP14 and CP15 instructions can always be executed in debug state regardless of processor 
mode.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-47
ID092411 Non-Confidential



Debug 
12.8.8 Effect of debug state on non-invasive debug

The processor non-invasive debug features are the ETM and Performance Monitoring Unit 
(PMU). All of these non-invasive debug features are disabled when the processor is in debug 
state. For more information, see Chapter 4 System Control and ETM interface on page 2-11.

When the processor is in debug state:
• the ETM ignores all instructions and data transfers
• PMU events are not counted
• events are not visible to the ETM
• the PMU Cycle Count Register (CCNT) is stopped.

12.8.9 Effects of debug events on processor registers

On entry to debug state, the processor does not update any general-purpose or program status 
register. This includes the SPSR_abt and R14_abt registers. In addition, the processor does not 
update any coprocessor registers, including the CP15 IFSR, DFSR, DFAR, or IFAR registers, 
except for CP14 DBGDSCR[5:2] method-of-entry bits. These bits indicate the type of debug 
event that caused the entry into debug state.

Note
 On entry to debug state because of a watchpoint debug event, the processor updates the 
DBGWFAR register with the address of the instruction accessing the watchpointed address 
plus:
• + 8 in ARM state
• + 4 in Thumb state.

12.8.10 Exceptions in debug state

While in debug state, exceptions are handled as follows:

Reset This exception is taken as in a normal processor state. This means the processor 
leaves debug state because of the system reset.

Prefetch Abort 
This exception cannot occur because the processor does not fetch any instructions 
while in debug state.

Debug The processor ignores debug events, including BKPT instructions.

SVC The processor ignores SVC exceptions.

Undefined When an Undefined Instruction exception occurs in debug state, the behavior of 
the processor is as follows:
• PC, CPSR, SPSR_und, and R14_und are unchanged
• the processor remains in debug state
• DBGDSCR[8], sticky Undefined bit, is set.

Synchronous Data abort  
When a synchronous Data Abort occurs in debug state, the behavior of the 
processor is as follows:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DBGDSCR[6], sticky synchronous data abort bit, is set
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-48
ID092411 Non-Confidential



Debug 
• DFSR and DFAR are set to the same values as if the abort had occurred in 
normal state.

Asynchronous Data Abort 
When an asynchronous Data Abort occurs in debug state, the behavior of the 
processor is as follows, regardless of the setting of the CPSR A bit:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DBGDSCR[7], sticky asynchronous data abort bit, is set
• the DFSR remains unchanged
• the processor does not act on this asynchronous Data Abort on exit from the 

debug state, that is, the asynchronous abort is discarded.

Asynchronous Data Aborts on entry and exit from debug state

On entering debug state, the processor executes a Data Synchronization Barrier (DSB) 
sequence to ensure that any outstanding asynchronous Data Aborts are detected, before starting 
debug operations.

If the DSB operation detects an asynchronous Data Abort, the processor records this event and 
its type as if the CPSR A bit was set. The purpose of latching this event is to ensure that it can 
be taken on exit from the debug state.

Before forcing the processor to leave debug state, the debugger must execute a DSB sequence 
to ensure that all debugger-generated asynchronous Data Aborts are detected, and therefore 
discarded, while still in debug state. After exiting debug state, the processor acts on any 
previously recorded asynchronous Data Aborts if permitted by the CPSR A bit.

12.8.11 Leaving debug state

The debugger can force the processor to leave debug state:
• by setting the restart request bit, DBGDRCR[1], to 1
• through the Cross Trigger Interface (CTI) external restart request mechanism, using the 

DBGRESTARTm and DBGRESTARTEDm signals.

When one of those restart requests occurs, the processor:

1. Clears the DBGDSCR[1] core restarted flag.

2. Leaves debug state.

3. Clears the DBGDSCR[0] core halted flag.

4. Drives the DBGACKm signal LOW, unless the DBGDSCR[11] DbgAck bit is set to 1.

5. Starts executing instructions from the address last written to the PC in the processor mode 
and state indicated by the current value of the CPSR. The CPSR IT execution state bit is 
restarted with the current value applying to the first instruction on restart.

6. Sets the DBGDSCR[1] core restarted flag to 1.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-49
ID092411 Non-Confidential



Debug 
12.9 Cache debug
This section describes cache debug. It consists of:
• Cache pollution in debug state
• Cache coherency in debug state
• Cache usage profiling.

12.9.1 Cache pollution in debug state

If bit [0] of the Debug State Cache Control Register (DBGDSCCR) is set to 0 while the 
processor is in debug state, then the L1 data cache does not perform any line fill. 

Note
 No special feature is required to prevent L1 instruction cache pollution because instruction side 
fetches cannot occur while in debug state.

12.9.2 Cache coherency in debug state

The debugger can update memory while in debug state:
• to replace an instruction with a BKPT, or to restore the original instruction
• to download code for the processor to execute on leaving debug state.

The debugger can maintain cache coherency in both these situations with the following features:

• If bit [2] of the DBGDSCCR is set to 0 while the processor is in debug state, then the 
processor treats any memory access that hits in L1 data cache as write-through, regardless 
of the memory region attributes. This guarantees that the L1 instruction cache can see the 
changes to the code region without the debugger executing a sequence of cache clean 
operations.

• After the code is written to memory, the debugger can execute either a CP15 instruction 
cache invalidate all operation, or a CP15 instruction cache invalidate line operation.

Note
 The processor can normally execute CP15 instruction cache invalidate all operation or CP15 
instruction cache invalidate line operation only in Privileged mode. However, in debug state the 
processor can execute these instructions even when invasive debug is not permitted in 
Privileged mode. This exception to the rule enables the debugger to maintain coherency.

12.9.3 Cache usage profiling

You can obtain cache usage profiling information using the Performance Monitoring Unit 
(PMU). The processor can count cache accesses and misses over a period of time. See Chapter 6 
Events and Performance Monitor.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-50
ID092411 Non-Confidential



Debug 
12.10 External debug interface
The system can access memory-mapped debug registers through the processor APB slave ports. 
This section describes the APB interface and the miscellaneous debug input and output signals:
• APB signals
• Miscellaneous debug signals
• Authentication signals on page 12-52.

12.10.1 APB signals

The APB slave ports are compliant with the AMBA 3 APB Protocol Specification and can be 
connected to the Debug Access Port (DAP). This APB slave interface supports 32-bits wide 
data, stalls, slave-generated aborts, and ten address bits [11:2] mapping 4KB of memory. An 
extra PADDRDBG31m signal indicates to the CPU the source of access.

Table A-21 on page A-26 shows the external debug interface signals.

12.10.2 Miscellaneous debug signals

This section describes the miscellaneous debug signals.

EDBGRQm

This signal generates a halting debug event, that is, it requests the CPU to enter debug state. 
When this occurs, the DBGDSCR[5:2] method-of-debug entry bits are set to b0100. When 
EDBGRQm is asserted, it must be held until DBGACKm is asserted. Failure to do so leads to 
Unpredictable behavior of the processor.

DBGACKm

The CPU asserts DBGACKm to indicate that the system has entered debug state. It serves as a 
handshake for the EDBGRQm signal. The DBGACKm signal is also driven HIGH when the 
debugger sets the DBGDSCR[10] DbgAck bit to 1.

DBGNOPWRDWN

The CPU asserts DBGNOPWRDWN when bit [0] of the Device Power down and Reset 
Control Register is 1 in either CPU. The processor power controller must work in Emulate mode 
when this signal is HIGH.

DBGROMADDR

The DBGROMADDR signal specifies bits [31:12] of the debug ROM physical address. This 
is a configuration input and must be tied off or only change while the processor is in reset. In a 
system with multiple debug ROMs, this address must be tied off to point to the top-level ROM 
address.

DBGROMADDRV is the valid signal for DBGROMADDR. If the address cannot be 
determined, DBGROMADDR must be tied off to zero and DBGROMADDRV must be tied 
LOW. The value of these signals can be read from the Debug ROM Address Register 
(DBGDRAR).
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-51
ID092411 Non-Confidential



Debug 
DBGSELFADDRm

The DBGSELFADDRm signal specifies bits [31:12] of the offset from the debug ROM 
physical address to the physical address where the CPU APB port is mapped to the base of the 
4KB debug register map. This is a configuration input and must be tied off or only change while 
the CPU is in reset.

DBGSELFADDRVm is the valid signal for DBGSELFADDRm. If the offset cannot be 
determined, DBGSELFADDRm must be tied off to zero and DBGSELFADDRVm must be 
tied LOW. The value of these signals can be read from the Debug Self Address Register (DSAR).

DBGRESTARTm

The DBGRESTARTm signal is used to bring the CPU out of debug halt state. The CPU 
acknowledges DBGRESTARTm by asserting DBGRESTARTEDm, and then starts fetching 
instructions when DBGRESTARTm is deasserted.

DBGRESTARTEDm

The CPU asserts DBGRESTARTEDm in response to a DBGRESTARTm request, when it is 
ready to exit debug halt state and return to normal run state.

DBGTRIGGERm

The CPU asserts DBGTRIGGERm to indicate that the system has accepted a debug request 
and attempts to enter debug state. It is not a handshake for the EDBGRQm signal. If 
DBGACKm does not go HIGH following DBGTRIGGERm, the memory system has stopped 
responding and the CPU has not entered debug state.

Table A-22 on page A-26 shows the debug miscellaneous signals.

12.10.3 Authentication signals

Table 12-41 shows a list of the valid authentication signals and the associated debug 
permissions. Authentication signals are used to configure the CPU so its activity can only be 
debugged or traced in a certain subset of CPU modes.

Changing the authentication signals

The NIDENm, and DBGENm input signals are either tied off to some fixed value or controlled 
by some external device.

Table 12-41 Authentication signal restrictions

DBGENma

a. When DBGENm is LOW, the processor behaves as if 
DBGDSCR[15:14] equals b00 with the exception that halting 
debug events are ignored when this signal is LOW.

NIDENm Non-invasive debug permitted 
in User and Privileged modes

0 0 No

X 1 Yes

1 0 Yes
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-52
ID092411 Non-Confidential



Debug 
If software running on the CPU has control over an external device that drives the authentication 
signals, it must make the change using a safe sequence:

1. Execute an implementation-specific sequence of instructions to change the signal value. 
For example, this might be a single STR instruction that writes certain value to a control 
register in a system peripheral.

2. If step 1 involves any memory operation, issue a Data Synchronization Barrier (DSB) 
instruction.

3. Poll the DBGDSCR or DBGAUTHSTATUS to check whether the CPU has already 
detected the changed value of these signals. This is required because the system might not 
issue the signal change to the CPU until several cycles after the DSB completes.

4. Issue an Instruction Synchronization Barrier (ISB) instruction.

The software cannot perform debug or analysis operations that depend on the new value of the 
authentication signals until this procedure is complete. The same rules apply when the debugger 
has control of the CPU through the DBGITR while in debug state.

The values of the DBGENm and NIDENm signals can be determined by polling 
DBGDSCR[17:16], DBGDSCR[15:14], or the DBGAUTHSTATUS.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-53
ID092411 Non-Confidential



Debug 
12.11 Using the debug functionality
This section provides some examples of using the processor debug functionality, both from the 
point of view of a software engineer writing code to run on an ARM processor and of a 
developer creating debug tools for the processor. In the former case, examples are given in ARM 
assembly language. In the latter case, the examples are in C pseudo-language, intended to 
convey the algorithms to be used. These examples are not intended as source code for a 
debugger.

The debugger examples use a pair of pseudo-functions such as the following:

uint32 ReadDebugRegister(int reg_num)
{
    // read the value of the debug register reg_num at address reg_num << 2
}

WriteDebugRegister(int reg_num, uint32 val)
{
    // write the value val to the debug register reg_num at address reg_num << 2
}

A basic function for using the debug state is executing an instruction through the DBGITR. 
Example 12-1 shows the sequence for executing an ARM instruction through the DBGITR.

Example 12-1 Executing an ARM instruction through the DBGITR

ExecuteARMInstruction(uint32 instr)
{
    // Step 1. Poll DBGDSCR until InstrCompl_l is set.
    repeat
    {
        dbgdscr := ReadDebugRegister(34);
    }
    until (dbgdscr & (1<<24));
    // Step 2. Write the opcode to the DBGITR.
    WriteDebugRegister(33, instr);
    // Step 3. Poll DBGDSCR until InstrCompl is set.
    repeat
    {
        dbgdscr := ReadDebugRegister(34);
    }
    until (dbgdscr & (1<<24);
}

This section describes:
• Debug communications channel on page 12-55
• Programming breakpoints and watchpoints on page 12-57
• Single-stepping on page 12-60
• Debug state entry on page 12-61
• Debug state exit on page 12-62
• Accessing registers and memory in debug state on page 12-63.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-54
ID092411 Non-Confidential



Debug 
12.11.1 Debug communications channel

There are two ways that an external debugger can send data to or receive data from the 
processor:

• The debug communications channel, when the processor is not in debug state. It is defined 
as the set of resources used for communicating between the external debugger and 
software running on the processor.

• The mechanism for forcing the processor to execute ARM instructions, when the 
processor is in debug state. For more information, see Executing instructions in debug 
state on page 12-46.

Rules for accessing the DCC

At the processor side, the debug communications channel resources are: 
• CP14 Debug Register c5 (DTR, comprising DBGDTRTXint and DBGDTRRXint)
• CP14 Debug Register c1 (DBGDSCRint).

The ARMv7 debug architecture is implemented on the processor so that:

• If a read of the DBGDSCRint returns 1 for the RXfull flag, a following read of the 
DBGDTRRXint returns valid data and RXfull is cleared. No ISB is required between these 
two CP14 instructions.

• If a read of the CP14 DBGDSCRint returns 1 for the TXfull flag, a following write to the 
DBGDTRTXext is Unpredictable.

• If a read of the CP14 DBGDSCRint returns 0 for the RXfull flag, a following read of the 
CP14 DTR returns an Unpredictable value.

• If a read of the CP14 DBGDSCRint returns 0 for the TXfull flag, a following write to the 
CP14 DTR writes the intended 32-bit word, and sets TXfull to 1. No ISB is required 
between these two CP14 instructions.

When Nonblocking mode is selected for DTR accesses, the following conditions are true for 
memory-mapped DBGDSCR, DBGDTRRXext, and DBGDTRTXext registers:

• If a read of the DBGDSCRext returns 0 for the TXfull flag, a following read of the 
memory-mapped DBGDTRTX is ignored. The content of TXfull is unchanged and the 
read returns an UNKNOWN value.

• If a read of the DBGDSCRext returns 0 for the RXfull flag, a following write of the 
memory-mapped DBGDTRRX passes valid data to the processor and sets RXfull to 1.

• If a read of the DBGDSCRext returns 1 for the TXfull flag, a following read of the 
DBGDTRTXext returns valid data and clears TXfull.

• If a read of the DBGDSCRext returns 1 for the RXfull flag, a following write of the 
memory-mapped DBGDTRRXext is ignored, that is, both RXfull and DBGDTRRX 
contents are unchanged.

Software access to the DCC

Software running on the processor that sends data to the debugger through the target-to-host 
channel can use the sequence of instructions that Example 12-2 on page 12-56 shows.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-55
ID092411 Non-Confidential



Debug 
Example 12-2 Target to host data transfer (target end)

 ; r0 -> word to send to the debugger
WriteDCC    MRC        p14, 0, PC, c0, c1, 0
            BEQ        WriteDCC
            MCR        p14, 0, Rd, c0, c5, 0
            BX         lr

Example 12-3 shows the sequence of instructions for sending data to the debugger through the 
host-to-target channel.

Example 12-3 Host to target data transfer (target end)

 ; r0 -> word sent by the debugger
ReadDCC     MRC        p14, 0, PC, c0, c1, 0
            BCC        ReadDCC
            MRC        p14, 0, Rd, c0, c5, 0
            BX         lr

Debugger access to the DCC

A debugger can access the DCC through the external interface. The following examples show 
the pseudo-code operations for these accesses.

Example 12-4 shows the code for target-to-host data transfer.

Example 12-4 Target to host data transfer (host end)

uint32        ReadDCC()
{
        // Step 1. Poll DBGDSCR until TXfull is set to 1.
        repeat
        {
            dbgdscr := ReadDebugRegister(34);
        }
        until (dbgdscr & (1<<29));
        // Step 2. Read the value from DBGDTRTX.
        dtr_val := ReadDebugRegister(35);

        return dtr_val;
}

Example 12-5 shows the code for host-to-target data transfer.

Example 12-5 Host to target data transfer (host end)

WriteDCC(uint32 dtr_val)
{
        // Step 1. Poll DBGDSCR until RXfull is clear.
        repeat
        {
            dbgdscr := ReadDebugRegister(34);
        }
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-56
ID092411 Non-Confidential



Debug 
        until (!(dbgdscr & (1<<30)));
        // Step 2. Write the value to DBGDTRRX.
        WriteDebugRegister(32, dtr_val);
}

While the processor is running, if the DCC is used as a data channel, it might be appropriate to 
poll the DCC regularly.

Example 12-6 shows the code for polling the DCC.

Example 12-6 Polling the DCC (host end)

PollDCC
{
    dbgdscr := ReadDebugRegister(34);
    if (dbgdscr & (1<<29))
    {
        // DBGDTRTX (target -> host transfer register) full
        dtr := ReadDebugRegister(35)
        ProcessTargetToHostWord(dtr);
    }
    if (!(dbgdscr & (1<<30)))
    {
        // DBGDTRRX (host -> target transfer register) empty
        dtr := GetNextHostToTargetWord()
        WriteDebugRegister(32, dtr);
    }
}

12.11.2 Programming breakpoints and watchpoints

This section describes the following operations:
• Programming simple breakpoints and the byte address select
• Setting a simple aligned watchpoint on page 12-58
• Setting a simple unaligned watchpoint on page 12-59.

Programming simple breakpoints and the byte address select

When programming a simple breakpoint, you must set the byte address select bits in the control 
register appropriately. For a breakpoint in ARM state, this is simple. For Thumb state, you must 
calculate the value based on the address.

For a simple breakpoint, you can program the settings for the other control bits as Table 12-42 
shows:

Table 12-42 Values to write to DBGBCR for a simple breakpoint

Bits Value to write Description

[31:29] 0b000 Reserved

[28:24] 0b00000 Breakpoint address mask

[23] 0b0 Reserved

[22:20] 0b000 Meaning of DBGBVR
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-57
ID092411 Non-Confidential



Debug 
Example 12-7 shows the sequence of instructions for setting a simple breakpoint.

Example 12-7 Setting a simple breakpoint

SetSimpleBreakpoint(int break_num, uint32 address, iset_t isa)
{
    // Step 1. Disable the breakpoint being set.
    WriteDebugRegister(80 + break_num, 0x0);
    // Step 2. Write address to the DBGBVR, leaving the bottom 2 bits zero.
    WriteDebugRegister(64 + break_num, address & 0xFFFFFFC);
    // Step 3. Determine the byte address select value to use.
    case (isa) of
    {
    // Note: The processor does not support Jazelle or ThumbEE states
    when THUMB:
        byte_address_select := (3 << (address & 2));
    when ARM:
        byte_address_select := 15;
    }
    // Step 4. Write the mask and control register to enable the breakpoint.
    WriteDebugRegister(80 + break_num, 7 | (byte_address_select << 5));
}

Setting a simple aligned watchpoint

The simplest and most common type of watchpoint watches for a write to a given address in 
memory. In practice, a data object spans a range of addresses but is aligned to a boundary 
corresponding to its size, so you must set the byte address select bits in the same way as for a 
breakpoint.

For a simple watchpoint, you can program the settings for the other control bits as Table 12-43 
shows:

[19:16] 0b0000 Linked BRP number

[15:9] 0b00 Reserved

[8:5] Derived from address Byte address select

[4:3] 0b00 Reserved

[2:1] 0b11 Supervisor access control

[0] 0b1 Breakpoint enable

Table 12-43 Values to write to DBGWCR for a simple watchpoint

Bits Value to write Description

[31:29] 0b000 Reserved

[28:24] 0b00000 Watchpoint address mask

[23:21] 0b000 Reserved

[20] 0b0 Enable linking

Table 12-42 Values to write to DBGBCR for a simple breakpoint (continued)

Bits Value to write Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-58
ID092411 Non-Confidential



Debug 
Example 12-8 shows the code for setting a simple aligned watchpoint.

Example 12-8 Setting a simple aligned watchpoint

SetSimpleAlignedWatchpoint(int watch_num, uint32 address, int size)
{
    // Step 1. Disable the watchpoint being set.
    WriteDebugRegister(112 + watch_num, 0);
    // (Step 2. Write address to the DBGWVR, leaving the bottom 3 bits zero.
    WriteDebugRegister(96 + watch_num, address & 0xFFFFFF8);
    // Step 3. Determine the byte address select value to use.
    case (size) of
    {
    when 1:
        byte_address_select := (1 << (address & 7));
    when 2:
        byte_address_select := (3 << (address & 6));
    when 4:
        byte_address_select := (15 << (address & 4));
    when 8:
        byte_address_select := 255;
    }
    // Step 4. Write the mask and control register to enable the watchpoint.
    WriteDebugRegister(112 + watch_num, 23 | (byte_address_select << 5));
}

Setting a simple unaligned watchpoint

Using the byte address select bits, certain unaligned objects up to a doubleword (64 bits) can be 
watched in a single watchpoint. However, this cannot cover all cases, and in many cases a 
second watchpoint might be required.

Table 12-44 shows some examples.

[19:16] 0b0000 Linked BRP number

[15:13] 0b00 Reserved

[12:5] Derived from address Byte address select

[4:3] 0b10 Load/Store access control

[2:1] 0b11 Privileged access control

[0] 0b1 Watchpoint enable

Table 12-43 Values to write to DBGWCR for a simple watchpoint (continued)

Bits Value to write Description

Table 12-44 Example byte address masks for watchpointed objects

Address of object Object size 
in bytes

First address 
value

First byte 
address mask

Second address 
value

Second byte 
address mask

0x00008000 1 0x00008000 0b00000001 Not required -

0x00008007 1 0x00008000 0b10000000 Not required -

0x00009000 2 0x00009000 0b00000011 Not required -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-59
ID092411 Non-Confidential



Debug 
Example 12-9 shows the code for setting a simple unaligned watchpoint.

Example 12-9 Setting a simple unaligned watchpoint

bool SetSimpleWatchpoint(int watch_num, uint32 address, int size)
{
    // Step 1. Disable the watchpoint being set.
    WriteDebugRegister(112 + watch_num, 0x0);
    // Step 2. Write addresses to the DBGWVRs, leaving the bottom 3 bits zero.
    WriteDebugRegister(96 + watch_num, (address & 0xFFFFFF8));
    // Step 3. Determine the byte address select value to use.
    byte_address_select := (1 << size) - 1;
    byte_address_select := (byte_address_select) << (address & 7);
    // Step 4. Write the mask and control register to enable the breakpoint.
    WriteDebugRegister (112 + watch_num, 5'b23 | ((byte_address_select & 0xFF) << 5));
    // Step 5. Set second watchpoint if required. This is the case if the byte
    // address mask is more than 8 bits.
    if (byte_address_select >= 256)
    {
        WriteDebugRegister(112 + watch_num + 1, 0);
        WriteDebugRegister(96 + watch_num + 1, (address & 0xFFFFFF8) + 8);
        WriteDebugRegister(112 + watch_num + 1 23| ((byte_address_select & 0xFF00) >> 3));
    }
    // Step 6. Return flag to caller indicating if second watchpoint was used.
    return (byte_address_select >= 256)
}

12.11.3 Single-stepping

You can use the breakpoint mismatch bit to implement single-stepping on the processor. Unlike 
high-level stepping, single-stepping implements a low-level step that executes a single 
instruction at a time. With high-level stepping, the instruction is decoded to determine the 
address of the next instruction and a breakpoint is set at that address.

Example 12-10 on page 12-61 shows the code for single-stepping off an instruction. The 
processor must be configured for halt-mode debugging.

0x0000900c 2 0x00009000 0b11000000 Not required -

0x0000900d 2 0x00009000 0b10000000 0x00009008 0b00000001

0x0000A000 4 0x0000A000 0b00001111 Not required -

0x0000A003 4 0x0000A000 0b01111000 Not required -

0x0000A005 4 0x0000A000 0b11100000 0x0000A008 0b00000001

0x0000B000 8 0x0000B000 0b11111111 Not required -

0x0000B001 8 0x0000B000 0b11111110 0x0000B008 0b00000001

Table 12-44 Example byte address masks for watchpointed objects (continued)

Address of object Object size 
in bytes

First address 
value

First byte 
address mask

Second address 
value

Second byte 
address mask
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-60
ID092411 Non-Confidential



Debug 
Example 12-10 Single-stepping off an instruction

SingleStepOff(uint32 address)
{
        bkpt := FindUnusedBreakpointWithMismatchCapability();
        SetComplexBreakpoint(bkpt, address, 4 << 20);
}

Note
 In Example 12-10, the third parameter of SetComplexBreakpoint() indicates the value to set 
DBGBCR[22:20].

This method of single-stepping steps off the instruction that might not necessarily be the same 
as stepping to the next instruction executed. In certain circumstances, the next instruction 
executed might be the same instruction being stepped off.

The simplest example of this is a branch to a self instruction such as (B .). In this case, the 
wanted behavior is most likely to step off the branch to self because this is often used as a means 
of waiting for an interrupt.

A more complex example is a return from function that returns to the same point. For example, 
a simple recursive function might terminate with:

BL ThisFunction
POP {saved_registers, pc}

In this case, the POP instruction loads a link register that is saved at the start of the function, and 
if that is the link register created by the BL instruction shown, it points back at the POP 
instruction. Therefore, this single step code unwinds the entire call stack to the point of the 
original caller, rather than stepping out a level at a time. It is not possible to single step this piece 
of code using either the high-level or low-level stepping methods.

12.11.4 Debug state entry

On entry to debug state, the debugger can read the processor state, including all registers and 
the PC, and determine the cause of the exception from the DBGDSCR method-of-entry bits.

Example 12-11 shows the code for entry to debug state.

Example 12-11 Entering debug state

OnEntryToDebugState(PROCESSOR_STATE *state)
{
    // Step 1. Read the DBGDSCR to determine the cause of debug entry.
    state->dbgdscr := ReadDebugRegister(34);
    // Step 2. Issue a DataSynchronizationBarrier instruction if required;
    // this is not required by the Cortex-R5 processor but is required for ARMv7
    // debug.
    if ((state->dbgdscr & (1<<19)) == 0)
    {
        ExecuteARMInstruction(0xE57FF040)
        // Step 3. Poll the DBGDSCR for DBGDSCR[19] to be set.
        repeat
        {
                dbgdscr := ReadDebugRegister(34);
        }
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-61
ID092411 Non-Confidential



Debug 
        until (dbgdscr & (1<<19));
    }
    // Step 4. Read the entire processor state. The function ReadAllRegisters
    //    reads all general-purpose registers for all processor modes, and saves
    //    the data in “state”.
    ReadAllRegisters(state);
    // Step 5. Based on the CPSR (processor state), determine the actual restart
    //    address
    if (state->cpsr & (1<<5);
    {
        // Thumb state
        state->pc := state->pc - 4;
    }
    else
    {
        // ARM state
        state->pc := state->pc - 8;
    }
    // Step 6. If the method of entry was Watchpoint Occurred, read the DBGWFAR
    // register
    method_of_debug_entry := ((state->dbgdscr >> 2) & 0xF;
    if (method_of_debug_entry == 2 || method_of_debug_entry == 10)
    {
        state->dbgwfar := ReadDebugRegister(6);
    }
}

12.11.5 Debug state exit

When exiting debug state, the program counter must always be written. If the execution state or 
CPSR must be changed, this must be done before writing to the PC because writing to the CPSR 
can affect the PC.

Having restored the program state, the debugger can restart by writing to bit [1] of the 
DBGDRCR. It must then poll bit [1] of the DBGDSCR to determine if the CPU has restarted.

Example 12-12 shows the code for exit from debug state.

Example 12-12 Leaving debug state

ExitDebugState(PROCESSOR_STATE *state)
{
    // Step 1. Update the CPSR value
    WriteCPSR(state->cpsr);
    // Step 2. Restore any registers corrupted by debug state. The function
    // WriteAllRegisters restores all general-purpose registers for all
    // processor modes apart from R0.
    WriteAllRegisters(state);
    // Step 3. Write the return address.
    WritePC(state->pc);
    // Step 4. Writing the PC corrupts R0 therefore, restore R0 now.
    WriteRegister(0, state->r0);
    // Step 5. Write the restart request bit in the DBGDRCR.
    WriteDebugRegister(36, 1<<1);
    // Step 6. Poll the RESTARTED flag in the DBGDSCR.
    repeat
    {
        dbgdscr := ReadDebugRegister(34);
    }
    until (dbgdscr & (1<<1));
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-62
ID092411 Non-Confidential



Debug 
}

12.11.6 Accessing registers and memory in debug state

This section describes the following:
• Reading and writing registers through the DCC
• Reading the PC in debug state
• Writing the CPSR in debug state on page 12-64
• Reading memory on page 12-64
• Fast register read/write on page 12-66
• Fast memory read/write on page 12-67.

Reading and writing registers through the DCC

To read a single register, the debugger can use the sequence that Example 12-13 shows. This 
sequence depends on two other sequences, Executing an ARM instruction through the DBGITR 
on page 12-54 and Target to host data transfer (host end) on page 12-56.

Example 12-13 Reading an ARM register

uint32 ReadARMRegister(int Rd)
{
    // Step 1. Execute instruction MCR p14, 0, Rd, c0, c5, 0 through the DBGITR.
    ExecuteARMInstruction(0xEE000E15 + (Rd<<12));
    // Step 2. Read the register value through DBGDTRTX.
    reg_val := ReadDCC();
    return reg_val;
}

Example 12-14 shows a similar sequence for writing an ARM register.

Example 12-14 Writing an ARM register

WriteRegister(int Rd, uint32 reg_val)
{
    // Step 1. Write the register value to DBGDTRRX.
    WriteDCC(reg_val);
    // Step 2. Execute instruction MRC p14, 0, Rd, c0, c5, 0 to the DBGITR.
    ExecuteARMInstruction(0xEE100E15 + (Rd<<12));
}

Reading the PC in debug state

Example 12-15 shows the code to read the PC.

Example 12-15 Reading the PC

ReadPC()
{
    // Step 1. Save R0
    saved_r0 := ReadRegister(0);
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-63
ID092411 Non-Confidential



Debug 
    // Step 2. Execute the instruction MOV r0, pc through the DBGITR.
    ExecuteARMInstruction(0xE1A0000F);
    // Step 3. Read the value of R0 that now contains the PC.
    pc := ReadRegister(0);
    // Step 4. Restore the value of R0.
    WriteRegister(0, saved_r0);
    return pc;
}

Note
 You can use a similar sequence to write to the PC to set the return address when leaving debug 
state or to read the CPSR or coprocessor registers.

Writing the CPSR in debug state

Example 12-16 shows the code for writing the CPSR.

Example 12-16 Writing the CPSR

WriteCPSR(uint32 cpsr_val)
{
    // Step 1. Save R0.
    saved_r0 := ReadRegister(0);
    // Step 2. Write the new CPSR value to R0.
    WriteRegister(0, cpsr_val);
    // Step 3. Execute instruction MSR R0, CPSR through the DBGITR.
    ExecuteARMInstruction(0xE12FF000);
    // Step 4. Execute a PrefetchFlush instruction through the DBGITR.
    ExecuteARMInstruction(9xEE070F95);
    // Step 5. Restore the value of R0.
    WriteRegister(0, saved_r0);
}

Reading memory

Example 12-17 shows the code for reading a byte of memory.

Example 12-17 Reading a byte of memory

uint8 ReadByte(uint32 address, bool &aborted)
{
    // Step 1. Save the values of R0 and R1.
    saved_r0 := ReadRegister(0);
    saved_r1 := ReadRegister(1);
    // Step 2. Write the address to R0.
    WriteRegister(0, address);
    // Step 3. Execute the instruction LDRB R1,[R0] through the DBGITR.
    ExecuteARMInstruction(0xE5D01000);
    // Step 4. Read the value of R1 that contains the data at the address.
    datum := ReadRegister(1);
    // Step 5. Restore the corrupted registers R0 and R1.
    WriteRegister(0, saved_r0);
    WriteRegister(1, saved_r1);
    // Step 6. Check the DBGDSCR for a sticky abort.
    aborted := CheckForAborts();
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-64
ID092411 Non-Confidential



Debug 
    return datum;
}

Example 12-18 shows the code for checking for aborts after a memory access.

Example 12-18 Checking for an abort after memory access

bool CheckForAborts()
{
    // Step 1. Check the DBGDSCR for a sticky abort.
    dbgdscr := ReadDebugRegister(34);
    if (dbgdscr & ((1<<6) + (1<<7))
    {
        // Step 2. Clear the sticky flag by writing DBGDRCR[2].
        WriteDebugRegister(36, 1<<2);
        return true;
    }
    else
    {
        return false;
    }
}

Note
 You can use a similar sequence to read a halfword of memory and to write to memory.

To read or write blocks of memory, substitute the data instruction with one that uses 
post-indexed addressing. For example:

LDRB R1, [R0],1

This prevents reloading the address value for each sequential word.

Example 12-19 shows the code for reading a block of bytes of memory.

Example 12-19 Reading a block of bytes of memory

ReadBytes(uint32 address, bool &aborted, uint8 *data, int nbytes)
{
    // Step 1. Save the value of R0 and R1.
    saved_r0 := ReadRegister(0);
    saved_r1 := ReadRegister(1);
    // Step 2. Write the address to R0
    WriteRegister(0, address);
    while (nbytes > 0)
    {
        // Step 3. Execute instruction LDRB R1,[R0],1 through the DBGITR.
        ExecuteARMInstruction(0xE4D01001);
            // Step 4. Read the value of R1 that contains the data at the
            // address.
        *data++ := ReadRegister(1);
        --nbytes;
    }
    // Step 5. Restore the corrupted registers R0 and R1.
    WriteRegister(0, saved_r0);
    WriteRegister(1, saved-r1);
    // Step 6. Check the DBGDSCR for a sticky abort.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-65
ID092411 Non-Confidential



Debug 
    aborted := CheckForAborts();
    return datum;
}

Example 12-20 shows the sequence for reading a word of memory.

Note
 A faster method is available for reading and writing words using the direct memory access 
function of the DCC. See Fast memory read/write on page 12-67.

Example 12-20 Reading a word of memory

uint32 ReadWord(uint32 address, bool &aborted)
{
    // Step 1. Save the value of R0.
    saved_r0 := ReadRegister(0);
    // Step 2. Write the address to R0.
    WriteRegister(0, address);
    // Step 3. Execute instruction LDC p14, c5, [R0] through the DBGITR.
    ExecuteARMInstruction(0xED905E00);
    // Step 4. Read the value from the DTR directly.
    datum := ReadDCC();
    // Step 5. Restore the corrupted register R0.
    WriteRegister(0, saved_r0);
    // Step 6. Check the DBGDSCR for a sticky abort.
    aborted := CheckForAborts();
    return datum;
}

Fast register read/write

When multiple registers must be read in succession, you can optimize the process by placing the 
DCC into stall mode and by writing the value 1 to the DCC access mode bits. For more 
information, see CP14 c1, Debug Status and Control Register on page 12-14.

Example 12-21 shows the sequence to change the DTR access mode.

Example 12-21 Changing the DTR access mode

SetDTRAccessMode(int mode)
{
    // Step 1. Write the mode value to DBGDSCR[21:20].
    dbgdscr := ReadDebugRegister(34);
    dbgdscr := (dbgdscr & ~(0x3<<20)) | (mode<<20);
    WriteDebugRegister(34, dbgdscr);
}

Example 12-22 shows the sequence to read registers in stall mode.

Example 12-22 Reading registers in stall mode

ReadRegisterStallMode(int Rd)
{

ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-66
ID092411 Non-Confidential



Debug 
    // Step 1. Write the opcode for MCR p14, 0, Rd, c5, c0 to the DBGITR.
    // Write stalls until the DBGITR is ready.
    WriteDebugRegister(33, 0xEE000E15 + (Rd<<12));
    // Step 2. Read the register value through the DCC. Read stalls until 
    // DBGDTRTX is ready
    reg_val := ReadDebugRegister(32);
    return reg_val;
}

Example 12-23 shows the sequence to write registers in stall mode.

Example 12-23 Writing registers in stall mode

WriteRegisterInStallMode(int Rd, uint32 value)
{
    // Step 1. Write the value to the DBGDTRRX.
    // Write stalls until the DBGDTRRX is ready.
    WriteDebugRegister(32, value);
    // Step 2. Write the opcode for MRC p14, 0, Rd, c5, c0 to the DBGITR.
    // Write stalls until the DBGITR is ready.
    WriteDebugRegister(33, 0xEE100E15 + (Rd<<12));
}

Note
 To transfer a register to the CPU when in stall mode, you are not required to poll the DBGDSCR 
each time an instruction is written to the DBGITR and a value read from or written to the DTR. 
The CPU stalls using the signal PREADYDBGm until the previous instruction has completed 
or the DTR register is ready for the operation.

Fast memory read/write

This section provides example code to enable faster reads from memory by making use of the 
DTR access mode.

Example 12-24 shows the sequence for reading a block of words of memory.

Example 12-24 Reading a block of words of memory

ReadWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{
    // Step 1. Write the value 0b01 to DBGDSCR[21:20] for stall mode.
    SetDTRAccessMode(1);
    // Step 2. Save the value of R0.
    saved_r0 := ReadRegisterInStallMode(0);
    // Step 3. Write the address to read from to the DBGDTRRX.
    // Write stalls until the DBGDTRRX is ready.
    WriteRegisterInStallMode(0, address);
    // Step 4. Write the opcode for LDC p14, c5, [R0], 4 to the DBGITR.
    // Write stalls until the DBGITR is ready.
    WriteDebugRegister(33, 0xECB05E01);
    // Step 5. Write the value 0b10 to DBGDSCR[21:20] for fast mode.
    SetDCCAccessMode(2);
    // Step 6. Loop reading out the data.
    // Each time a word is read from the DBGDTRTX, the instruction is reissued.
    while (nwords > 1)
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-67
ID092411 Non-Confidential



Debug 
    {
        *data++ = ReadDebugRegister(35);
        --nwords;
    }
    // Step 7. Write the value 0b00 to DBGDSCR[21:20] for non-blocking mode.
    SetDTRAccessMode(0);
    // Step 8. Must wait for the final instruction to complete. If there
    // was an abort, this completes immediately.
    do
    {
       dbgdscr := ReadDebugRegister(34);
    }
    until (dbgdscr & (1<<24));
    // Step 9: Check for aborts.
    aborted := CheckForAborts();
    // Step 10: Read the final word from the DCC.
    if (!aborted) *data := ReadDCC();
    // Step 11. Restore the corrupted register r0.
    WriteRegister(0, saved_r0);
}

Example 12-25 shows the sequence for writing a block of words to memory.

Example 12-25 Writing a block of words to memory (fast download)

WriteWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{
    // Step 1. Save the value of R0.
    saved_r0 := ReadRegister(0);
    // Step 2. Write the value 0b10 to DBGDSCR[21:20] for fast mode.
    SetDTRAccessMode(2);
    // Step 3. Write the opcode for MRC p14, 0, R0, c5, c0 to the DBGITR.
    // Write stalls until the DBGITR is ready but the instruction is not issued.
    WriteDebugRegister(33, 0xEE100E15);
    // Step 4. Write the address to read from to the DBGDTRRX
    // Write stalls until the DBGITR is ready, but the instruction is not reissued.
    WriteDebugRegister(32, address);
    // Step 5. Write the opcode for STC p14, c5, [R0], 4 to the DBGITR.
    // Write stalls until the DBGITR is ready but the instruction is not issued.
    WriteDebugRegister(33, 0xECA05E01);
    // Step 6. Loop writing the data.
    // Each time a word is written to the DBGDTRRX, the instruction is reissued.
    while (nwords > 0)
    {
        WriteDebugRegister(35, *data++);
        --nwords;
    }
    // Step 7. Write the value b00 to DBGDSCR[21:20] for normal mode.
    SetDTRAccessMode(0);
    // Step 8. Restore the corrupted register R0.
    WriteRegister(0, saved_r0);
    // Step 9. Check the DBGDSCR for a sticky abort.
    aborted := CheckForAborts();
}

Note
 As the amount of data transferred increases, these functions reach an optimum performance of 
one debug register access per data word transferred.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-68
ID092411 Non-Confidential



Debug 
After writing data to memory, you must execute a data synchronization barrier instruction to 
ensure that the memory window updates properly
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-69
ID092411 Non-Confidential



Debug 
12.12 Debugging systems with energy management capabilities
The processor offers functionality for debugging systems with energy-management capabilities. 
This section describes scenarios where the OS takes energy-saving measures when in an idle 
state.

The different measures that the OS can take to save energy during an idle state are divided into 
two groups:

Standby The OS takes measures that reduce energy consumption but maintain the 
processor state.

Power down The OS takes measures that reduce energy consumption but do not maintain the 
processor state, for example, Dormant or Shutdown mode. Recovery involves a 
reset of the processor after the power level has been restored, and reinstallation of 
the processor state.

Standby is the least invasive OS energy-saving state because it only implies that the core is 
unavailable. It does not clear any of the debug settings. For this case, the processor offers the 
following:

• If the processor is in standby and a halting debug event occurs, the processor:
— leaves standby 
— retires the Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instruction
— enters debug state.

• If the processor is in standby and detects an APB port access, it temporarily leaves standby 
state to complete the transaction. While the processor wakes up from standby, the APB 
access is held by keeping the PREADYDBGm signal LOW.

12.12.1 Emulating power down

By writing to bit [0] of the DBGPRCR in either CPU, the debugger causes the processor to 
assert the DBGNOPWRDWN output. The expected usage model of this signal is that it 
connects to the system power controller and that, when HIGH, it indicates that this controller 
must work in emulate mode.

On a power-down request from the processor, if the power controller is in emulate mode, it does 
not remove processor power or ETM power. Otherwise, it behaves exactly the same as in normal 
mode.

Emulating power down is ideal for debugging applications running on top of operating systems 
that are free of errors because the debug register settings are not lost on a power-down event. 
However, you must ensure that:

• nIRQm and nFIQm interrupts and EVENTIm events to the processor are externally 
masked as part of the emulation to prevent them from retiring the WFI or WFE instruction 
from the pipeline.

• The reset controller asserts nRESETm only on emulated power up, rather than combining 
it with DBGRESETmn. Asserting DBGRESETmn clears the debug registers inside the 
processor.

• The timing effects of power down and voltage stabilization are not factored in the 
power-down emulation. This is the case for systems with voltage recovery controlled by 
a closed loop system that monitors the processor supply voltage, rather than a fixed timed 
for voltage recovery.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-70
ID092411 Non-Confidential



Debug 
• The emulation does not model state lost during power down, making it possible to miss 
errors in the state storage and recovery routines.

• Attaching the debugger for a postmortem debug session is not possible because setting the 
DBGNOPWRDWN signal to 1 might not cause the processor to power up. The effect of 
setting DBGNOPWRDWN to 1 when the processor is already powered down is 
implementation-defined, and is up to the system designer.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 12-71
ID092411 Non-Confidential



Chapter 13 
Integration Test Registers

This chapter describes how to use the Integration Test Registers in the processor. It contains the 
following sections:
• About Integration Test Registers on page 13-2
• Summary of the processor registers used for integration testing on page 13-3
• Processor integration testing on page 13-4.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-1
ID092411 Non-Confidential



Integration Test Registers 
13.1 About Integration Test Registers
The processor contains Integration Test Registers that enable you to verify integration of the 
design and enable topology detection of the design using debug tools. The Integration Mode 
Control Register (DBGITCTRL), that is also described in this chapter, controls the use of the 
Integration Test Registers.

The Integration Test Registers are programmed using the debug APB interface. For more 
information on using the debug APB interface see Chapter 12 Debug.

When programming the Integration Test Registers you must enable all the changes at the same 
time.

For more information about the Integration Test Registers and the Integration Mode Control 
Register see the ARM Architecture Reference Manual.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-2
ID092411 Non-Confidential



Integration Test Registers 
13.2 Summary of the processor registers used for integration testing
Table 13-1 lists the processor Integration Test Registers and the Integration Mode Control 
Register (DBGITCTRL).

Table 13-1 Integration Test Registers summary

Register name Base 
offset

Default 
value Type Description

Integration Test Registers

DBGITETMIF 0xED8 n/aa WO See DBGITETMIF Register (ETM interface) on page 13-5

DBGITMISCOUT 0xEF8 n/a WO See DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6

DBGITMISCIN 0xEFC -a RO See DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7

Integration Mode Control Register

DBGITCTRL 0xF00 0 R/W See Integration Mode Control Register (DBGITCTRL) on page 13-8

a. See the register description for this value.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-3
ID092411 Non-Confidential



Integration Test Registers 
13.3 Processor integration testing
This section describes the behavior and use of the Integration Test Registers that are in the 
processor. It also describes the Integration Mode Control Register that controls the use of the 
Integration Test Registers. For more information about the DBGITCTRL see the ARM 
Architecture Reference Manual.

If you want to utilise the integration test registers you must first set bit [0] of the Integration 
Mode Control Register to 1.

• You can use the write-only Integration Test Registers to set the outputs of some of the 
processor signals. Table 13-2 shows the signals that you can write in this way.

• You can use the read-only Integration Test Registers to read the state of some of the 
processor inputs. Table 13-3 on page 13-5 shows the signals that you can read in this way.

Various CoreSight components, including ETM-R5, also include Integration Test Registers that 
you can use in conjunction with processor Integration Test Registers for testing the connectivity 
between them. For more information see the relevant documentation, for example the ETM-R5 
Technical Reference Manual

Table 13-2 Output signals that can be controlled by the Integration Test Registers

Signal Register Bit Register description

DBGRESTARTEDm DBGITMISCOUT [9] See DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6

DBGTRIGGERm DBGITMISCOUT [8]

ETMWFIPENDINGm DBGITMISCOUT [5]

nPMUIRQm DBGITMISCOUT [4]

COMMTXm DBGITMISCOUT [2]

COMMRXm DBGITMISCOUT [1]

DBGACKm DBGITMISCOUT [0]

EVNTBUSm[54, 0] DBGITETMIF [13:12] See DBGITETMIF Register (ETM interface) on page 13-5

ETMCIDm[31, 0] DBGITETMIF [11:10]

ETMDAm[31, 0] DBGITETMIF [7:6]

ETMDCTLm[11, 0] DBGITETMIF [5:4]

ETMDDm[63, 0] DBGITETMIF [9:8]

ETMIAm[31, 1] DBGITETMIF [3:2]

ETMICTLm[13, 0] DBGITETMIF [1:0]
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-4
ID092411 Non-Confidential



Integration Test Registers 
This section describes:
• Using the Integration Test Registers
• Performing integration testing
• DBGITETMIF Register (ETM interface)
• DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6
• DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7
• Integration Mode Control Register (DBGITCTRL) on page 13-8.

13.3.1 Using the Integration Test Registers

When bit [0] of the Integration Mode Control Register (DBGITCTRL) is set to b1: 

• Values written to the write-only Integration Test Registers map onto the specified outputs 
of the macrocell. For example, writing b1 to DBGITMISCOUT[0] causes DBGACKm 
to be asserted HIGH.

• Values read from the read-only Integration Test Registers correspond to the values of the 
specified inputs of the macrocell. For example, if you read DBGITMISCIN[9:8] you 
obtain the value of ETMEXTOUTm[1:0].

13.3.2 Performing integration testing

When you perform integration testing or topology detection, ARM strongly recommends that 
the processor is halted, because toggling input and output pins might have an unwanted effect 
on the operation of the processor. If you follow this recommendation, you must not set the 
DBGITCTRL Register until the processor has halted.

After you perform integration testing or topology detection, that is, the Integration Mode 
Control Register has been set, the system must be reset. This is because the signals that are 
toggled can have an unwanted effect on connected devices. 

13.3.3 DBGITETMIF Register (ETM interface)

The DBGITETMIF Register at offset 0xED8 is write-only. Figure 13-1 on page 13-6 shows the 
register bit assignments.

Table 13-3 Input signals that can be read by the Integration Test Registers

Signal Register Bit Register description

DBGRESTARTm DBGITMISCIN [11] See DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7

ETMEXTOUTm[1:0] DBGITMISCIN [9:8]

nETMWFIREADYm DBGITMISCIN [5]

nIRQm DBGITMISCIN [2]

nFIQm DBGITMISCIN [1]

EDBGRQm DBGITMISCIN [0]
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-5
ID092411 Non-Confidential



Integration Test Registers 
Figure 13-1 DBGITETMIF Register bit assignments

Table 13-4 shows the fields when writing the DBGITETMIF Register. When this register is 
written the appropriate output pins take the value written.

13.3.4 DBGITMISCOUT Register (Miscellaneous Outputs)

The DBGITMISCOUT Register at offset 0xEF8 is write-only. Figure 13-2 on page 13-7 shows 
the register bit assignments.

Reserved

31 5 4 3 0

EVNTBUSm[54]

614 13 12 11 10 9 8 7 2 1

EVNTBUSm[0]
ETMCIDm[31]

ETMCIDm[0]
ETMDDm[63]

ETMDDm[0]
ETMDAm[31] ETMDAm[0]

ETMICTLm[0]
ETMICTLm[13]
ETMIAm[1]
ETMIAm[31]
ETMDCTLm[0]
ETMDCTLm[11]

Table 13-4 DBGITETMIF Register bit assignments

Bits Name Function

[31:14] - Reserved. Write as zero.

[13] EVNTBUSm[54] Set value of the EVNTBUSm[54] output pin.

[12] EVNTBUSm[0] Set value of the EVNTBUSm[0] output pin.

[11] ETMCIDm[31] Set value of the ETMCIDm[31] output pin.

[10] ETMCIDm[0] Set value of the ETMCIDm[0] output pin.

[9] ETMDDm[63] Set value of the ETMDDm[63] output pin.

[8] ETMDDm[0] Set value of the ETMDDm[0] output pin.

[7] ETMDAm[31] Set value of the ETMDAm[31] output pin.

[6] ETMDAm[0] Set value of the ETMDAm[0] output pin.

[5] ETMDCTLm[11] Set value of the ETMDCTLm[11] output pin.

[4] ETMDCTLm[0] Set value of the ETMDCTLm[0] output pin.

[3] ETMIAm[31] Set value of the ETMIAm[31] output pin.

[2] ETMIAm[1] Set value of the ETMIAm[1] output pin.

[1] ETMICTLm[13] Set value of the ETMICTLm[13] output pin.

[0] ETMICTLm[0] Set value of the ETMICTLm[0] output pin.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-6
ID092411 Non-Confidential



Integration Test Registers 
Figure 13-2 DBGITMISCOUT Register bit assignments

Table 13-5 shows the fields when writing the DBGITMISCOUT Register. When this register is 
written the appropriate output pins take the value written.

13.3.5 DBGITMISCIN Register (Miscellaneous Inputs)

The DBGITMISCIN Register at offset 0xEFC is read-only. Figure 13-3 on page 13-8 shows the 
register bit assignments.

Reserved

31 5 4 3 0

nPMUIRQm

DBGTRIGGERm

6 2 1

COMMTXm
Reserved

DBGACKm
COMMRXm

78910

Reserved

DBGRESTARTEDm

ETMWFIPENDINGm

Table 13-5 DBGITMISCOUT Register bit assignments

Bits Name Function

[31:10] - Reserved. Write as zero.

[9] DBGRESTARTEDm Set value of the DBGRESTARTEDm output pin.

[8] DBGTRIGGERm Set value of the DBGTRIGGERm output pin.

[7:6] - Reserved. Write as zero.

[5] ETMWFIPENDINGm Set value of the ETMWFIPENDINGm output pin.

[4] nPMUIRQm Set value of nPMUIRQm output pin.

[3] - Reserved. Write as zero.

[2] COMMTXm Set value of COMMTXm output pin.

[1] COMMRXm Set value of COMMRXm output pin.

[0] DBGACKm Set value of the DBGACKm output pin.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-7
ID092411 Non-Confidential



Integration Test Registers 
Figure 13-3 DBGITMISCIN Register bit assignments

Table 13-6 lists the register bit assignments for the DBGITMISCIN Register.

13.3.6 Integration Mode Control Register (DBGITCTRL)

The DBGITCTRL Register, register 0x3C0 at offset 0xF00, is read/write. Figure 13-4 shows the 
register bit assignments.

Figure 13-4 DBGITCTRL Register bit assignments

Reserved

31 10 9 8 7 4 3 2 0

ETMEXTOUTm[1:0]

6 5

Reserved
nETMWFIREADYm

Reserved
nFIQm
nIRQm

EDBGRQm

Reserved
DBGRESTARTm

1112 1

Table 13-6 DBGITMISCIN Register bit assignments

Bits Name Function

[31:12] - Reserved. Read Undefined.

[11] DBGRESTARTm Read value of the DBGRESTARTm input pin.

[10] - Reserved. Read Undefined.

[9:8] ETMEXTOUTm Read value of the ETMEXTOUTm[1:0] input pins.

[7:6] - Reserved. Read Undefined.

[5] nETMWFIREADYm Reads the nETMWFIREADYm input pin. Although this pin is active LOW, the value 
of this bit matches the physical state of the signal:
0 = input pin is LOW (asserted)
1 = input pin is HIGH (deasserted).

[4:3] - Reserved. Read Undefined.

[2] nFIQm Read value of nFIQm input pin.

[1] nIRQm Read value of nIRQm input pin.

[0] EDBGRQm Read value of EDBGRQm input pin.

Reserved

31 01

INTMODE
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-8
ID092411 Non-Confidential



Integration Test Registers 
Table 13-7 shows the fields of the DBGITCTRL Register.

Writing to the DBGITCTRL register controls whether the processor is in its default functional 
mode, or in integration mode, where the inputs and outputs of the device can be directly 
controlled for the purpose of integration testing or topology detection. For more information see 
the ARM Architecture Reference Manual.

Table 13-7 DBGITCTRL Register bit assignments

Bits Access Name Function

[31:1] RAZ/SBZP - Reserved.

[0] R/W INTMODE Controls whether the processor is in normal operating mode or integration mode:
b0 = normal operation, this is the reset value
b1 = integration mode enabled.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. 13-9
ID092411 Non-Confidential



Appendix A 
Signal Descriptions

This appendix describes the processor signals. It contains the following sections:
• About the processor signal descriptions on page A-2
• Global signals on page A-3
• Configuration signals on page A-4
• Interrupt signals, including VIC interface signals on page A-8
• L2 interface signals on page A-9
• TCM interface signals on page A-22
• Redundant CPU signals on page A-25
• Debug interface signals on page A-26
• ETM interface signals on page A-28
• Test signals on page A-29
• MBIST signals on page A-30
• Validation signals on page A-31
• FPU signals on page A-32
• Split/Lock on page A-33
• Power modes on page A-34.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-1
ID092411 Non-Confidential



Signal Descriptions 
A.1 About the processor signal descriptions
The tables in this appendix list the processor signals, along with their dimensions and direction, 
input or output, and a high-level description. Unless otherwise specified, all signals are sampled 
on or driven from the rising edge of the clock, CLKIN.

Many of the signal names have an m suffix, that appears before the n suffix in the case of 
negative sense signals. This indicates that the processor has two signals, one for each CPU, 
named with m being 0 or 1 for CPU0 and CPU1 respectively.

The Cortex-R5 processor has the same signals regardless of configuration. If a particular feature 
is not implemented, the signals associated with that feature are not used.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-2
ID092411 Non-Confidential



Signal Descriptions 
A.2 Global signals
Table A-1 shows the processor global signals.

Table A-1 Global signals

Signal Direction Description

CLKIN Input Master processor clock.

ACPRESETn Input ACP reset. Assert with nRESET0 and nRESET1 to reset the whole processor except the 
debug registers. This signal can be asserted asynchronously to CLKIN.

ACPIDLE Output Indicate when uSCU is empty, for drain-and-power-down.

nRESETm Input CPU non-debug logic reset. These signals can be asserted asynchronously to CLKIN.

nSYSPORESET Input System power on reset.

nCPUHALTm Input Processor halt after reset. These signals can be asserted asynchronously to CLKIN.

DBGNOCLKSTOP Input Processor does not stop the clocks when entering standby mode.

nCLKSTOPPEDm Output When LOW, this indicates clock has been stopped because processor is in Standby Mode.
It is never asserted without one of WFIPIPESTOPPEDm or WFEPIPESTOPPEDm.

nWFEPIPESTOPPEDm Output When LOW, this indicates that the CPU is in standby mode because of a WFE instruction. 
The CPU pipeline is inactive..

nWFIPIPESTOPPEDm Output When LOW, this indicates the CPU is in standby mode because of a WFI instruction. The 
CPU pipeline is inactive.

EVENTIm Input Event input signal.

EVENTOm Output Event output signal.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-3
ID092411 Non-Confidential



Signal Descriptions 
A.3 Configuration signals
Table A-2 shows the processor configuration signals. These signals must be tied off, or only 
changed under reset.

Table A-2 Configuration signals

Signal Direction Description

VINITHIm Input Reset V-bit value. When HIGH indicates HIVECS mode at reset. See c1, System Control 
Register on page 4-38 for more information.

CFGEE Input Reset EE-bit value. When HIGH indicates the implementation uses BE-8 mode for 
exceptions at reset. See c1, System Control Register on page 4-38 for more information.

CFGIE Input Instruction side endianness, reflected in the IE-bit. When HIGH indicates that big endian 
instruction fetch is used. See c1, System Control Register on page 4-38 for more 
information.

INITRAMAm Input Reset value of ATCM enable bit. When HIGH indicates Tightly-Coupled Memory A, 
ATCM, enabled at reset. See c9, ATCM Region Register on page 4-64 for more 
information.

INITRAMBm Input Reset value of BTCM bit. When HIGH indicates Tightly-Coupled Memory B, BTCM, 
enabled at reset. See c9, BTCM Region Register on page 4-63 for more information.

LOCZRAMAm Input When HIGH indicates ATCM initial base address is zero and BTCM base address is 
implementation-defined.
When LOW indicates BTCM initial base address is zero and ATCM base address is 
implementation-defined.

TEINIT Input Reset TE-bit value. Determines exception handling state at reset. When set to:
0 = ARM
1 = Thumb.
See c1, System Control Register on page 4-38 for more information.

CFGATCMSZm[3:0] Input Selects the ATCM size. The encodings for the TCM sizes are:
b0000 = 0KB
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100 = 2MB
b1101 = 4MB
b1110 = 8MB.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-4
ID092411 Non-Confidential



Signal Descriptions 
CFGBTCMSZm[3:0] Input Selects the BTCM size. The encodings for the TCM sizes are:
b0000 = 0KB
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100 = 2MB
b1101 = 4MB
b1110 = 8MB.

CFGNMFIm Input When HIGH, enable nonmaskable Fast Interrupts. Reflected in the NMFI bit. See c1, 
System Control Register on page 4-38 for more information.

ENTCM1IFm Input Enable B1TCM interface. Use B0TCM only if this signal not tied HIGH.

PARECCENRAMm[2:0] Input TCMs ECC check enable. Tie each bit HIGH to enable ECC checking on the appropriate 
TCM at reset. The bit allocations are as follows:
[2] = B1TCMa 
[1] = B0TCMa

[0] = ATCM.
See c1, Auxiliary Control Register on page 4-41 for more information.

PARITYLEVEL Input Selects between odd and even parity for caches and buses. See Chapter 8 Level One 
Memory System:
Tie LOW for even parity
Tie HIGH for odd parity.

ERRENRAMm[2:0] Input TCMs external error enable. Tie each bit high to enable the external error signals for each 
TCM at reset. The bit allocations are as follows:
[2] = B1TCM
[1] = B0TCM
[0] = ATCM.
See c1, Auxiliary Control Register on page 4-41 for more information.

RMWENRAMm[1:0]b Input RMW enable bits reset values. Tie each bit high to enable read-modify-write for TCM 
interfaces at reset.c The bit allocations are as follows:
[1] = BTCM
[0] = ATCM.
See c1, Auxiliary Control Register on page 4-41 for more information.

SLBTCMSBm Input Use most significant bit of BTCM address to select B1TCM if this signal is HIGH.
Use bit [3] of the BTCM address if this signal is LOW.

INITPPXm Input AXI peripheral interface is enabled out-of-reset.

INITPPHm Input AHB peripheral interface is enabled out-of-reset.

GROUPID[3:0] Input ID of Cortex-R5 processor group (reflected in MPIDR).

Table A-2 Configuration signals (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-5
ID092411 Non-Confidential



Signal Descriptions 
Table A-3 shows the peripheral interface size encodings.

PPHBASEm[31:12] Input Base address of AHB peripheral interface. Must be size-aligned.

PPHSIZEm[4:0] Input Size of AHB peripheral interface. See Table A-3 for the size encodings.

PPXBASEm[31:12] Input Base address of AXI peripheral interface. Must be size aligned.

PPXSIZEm[4:0] Input Size of AXI peripheral interface. See Table A-3 for the size encodings.

PPVBASEm[31:12] Input Base address of virtual-AXI peripheral interface. Must be within AXI PP and size-aligned. 
The virtual AXI peripheral interface region must be the same size or smaller than the AXI 
peripheral interface.

PPVSIZEm[4:0] Input Size of virtual-AXI peripheral interface. See Table A-3 for the size encodings.

a. If the BTCM is configured with ECC, bit[2] and bit[1] must be the same value.
b. Not used if 32-bit ECC is included.
c. Not available in r0px revisions of the processor.

Table A-2 Configuration signals (continued)

Signal Direction Description

Table A-3 Peripheral interface size encodings

Encoding Size

b00011 4KB

b00100 8KB

b00101 16KB

b00110 32KB

b00111 64KB

b01000 128KB

b01001 256KB

b01010 512KB

b01011 1MB

b01100 2MB

b01101 4MB

b01110 8MB

b01111 16MB

b10000 32MB

b10001 64MB

b10010 128MB

b10011 256MB

b10100 512MB
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-6
ID092411 Non-Confidential



Signal Descriptions 
b10101 1GB

b10110 2GB

b10111 4GB

Table A-3 Peripheral interface size encodings (continued)

Encoding Size
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-7
ID092411 Non-Confidential



Signal Descriptions 
A.4 Interrupt signals, including VIC interface signals
Table A-4 shows the interrupt signals including signals used on the VIC interface.

Table A-4 Interrupt signals

Signal Direction Description

nFIQm Input Fast interrupta. This signal can be asserted asynchronously if INTSYNCEN is HIGH.

nIRQm Input Normal interrupta. This signal can be asserted asynchronously if INTSYNCEN is HIGH.

INTSYNCEN Input Tie HIGH if the interrupt inputs are asynchronous to CLKIN.
Tie LOW if the interrupt inputs are synchronous to CLKIN.

IRQADDRVm Input Indicates IRQADDRm is valid. This signal can be asserted asynchronously if 
IRQADDRVSYNCEN is HIGH.

IRQADDRVSYNCEN Input Tie HIGH if the IRQADDRVm input from the VIC is asynchronous to CLKIN.
Tie HIGH if the IRQADDRVm input from the VIC is synchronous to CLKIN.

IRQADDRm[31:2] Input Address of the IRQ. This signal can be asserted asynchronously but must be stable when 
IRQADDRVm is asserted.

IRQACKm Output Acknowledges interrupt.

nPMUIRQm Output Interrupt request by Performance Monitor Unit (PMU).

a. This signal is level-sensitive and must be held LOW until a suitable interrupt response is received from the processor.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-8
ID092411 Non-Confidential



Signal Descriptions 
A.5 L2 interface signals
This section describes the processor L2 interface AXI signals. For more information on 
Advanced Microcontroller Bus Architecture (AMBA) AXI signals see the AMBA AXI Protocol 
Specification. For more information on the AHB signals, see the AMBA 3 AHB-Lite Protocol 
Specification.

A.5.1 AXI master port

Table A-5 shows the AXI master port signals for the L2 interface. With the exception of the 
ACLKENMm, all signals are only sampled or driven on CLKIN edges when ACLKENMm 
is asserted, see AMBA interface clocking on page 2-16 for more information.

Table A-5 AXI master port signals for the L2 interface

Signal Direction Description

ACLKENMm Input Clock enable for the AXI master port.

Write address channel

AWADDRMm[31:0] Output Transfer start address.

AWBURSTMm[1:0] Output Write burst type.

AWCACHEMm[3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such as 
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions 
such as Normal, Non-cacheable used here.

AWIDMm[3:0] Output The identification tag for the write address group of signals.

AWLENMm[3:0] Output Write transfer burst length.

AWLOCKMm[1:0] Output Lock signal.

AWPROTMm[2:0] Output Protection type.

AWREADYMm Input Address ready. The slave uses this signal to indicate that it can accept the address.

AWSIZEMm[2:0] Output Indicates the size of the transfer.

AWINNERMm[3:0] Output Provides inner attribute information for the write address channel. See Table 9-2 on 
page 9-7 for information about the encoding of this signal.a 

AWSHAREMm[0] Output Indicates the shareability of the address:
0 = non-shared
1 = shared.

AWVALIDMm Output Indicates address and control are valid.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-9
ID092411 Non-Confidential



Signal Descriptions 
Write data channel

WDATAMm[63:0] Output Write data.

WIDMm[3:0] Output The identification tag for the write data group of signals. 

WLASTMm Output Indicates the last data transfer of a burst.

WREADYMm Input Indicates that the slave is ready to accept write data

WSTRBMm[7:0] Output Write strobes used to indicate which byte lanes must be updated.

WVALIDMm Output Indicates address and control are valid.

Write response channel

BIDMm[3:0] Input The identification tag for the write response signal.

BREADYMm Output Indicates that the CPU is ready to accept write response.

BRESPMm[1:0] Input Write response.

BVALIDMm Input Indicates that a valid write response is available.

Read address channel

ARADDRMm[31:0] Output Instruction fetch burst start address.

ARBURSTMm[1:0] Output Burst type.

ARCACHEMm[3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such as 
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions 
such as Normal, Non-cacheable used here.

ARIDMm[3:0] Output Identification tag for the read address group of signals

ARLENMm[3:0] Output Instruction fetch burst length.

ARLOCKMm[1:0] Output Lock signal.

ARPROTMm[2:0] Output Protection type.

ARREADYMm Input Address ready. The slave uses this signal to indicate that it can accept the address.

ARSIZEMm[2:0] Output Indicates the size of the transfer.

ARINNERMm[3:0] Output Provides inner attribute for the read address channel. See Table 9-2 on page 9-7 for 
information about the encoding of this signal.a

Table A-5 AXI master port signals for the L2 interface (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-10
ID092411 Non-Confidential



Signal Descriptions 
A.5.2 AXI master port error detection signals

Table A-6 shows the AXI master port error detection signals. these signals are only generated if 
the processor is configured to include AXI bus parity. See Configurable options on page 1-6 for 
more information.

ARSHAREMm Output Indicates the shareability of the address:
0 = non-shared
1 = shared.

ARVALIDMm Output Indicates address and control are valid.

Read Data Channel

RDATAMm[63:0] Input Read Data.

RIDMm[3:0] Input The identification tag for the read data group of signals.

RLASTMm Input Indicates the last transfer in a read burst.

RREADYMm Output Read ready signal indicating that the bus master can accept read data and response 
information.

RRESPMm[1:0] Input Read response.

RVALIDMm Input Indicates that read data is available.

a. This is an AXI extension signal.

Table A-5 AXI master port signals for the L2 interface (continued)

Signal Direction Description

Table A-6 AXI master port error detection signals

Signal Direction Description

ARADDRPTYMm[3:0] Output Parity bits for ARADDRMma

ARCTLPTYMm[3:0] Output Parity bits for the rest of the read address channela

ARRPTYMm Input Parity bit for ARREADYMm

ARUSERPTYMm Output Parity bit for sideband signalsa

ARVPTYMm Output Parity bit for ARVALIDMm

AWADDRPTYMm[3:0] Output Parity bits for AWADDRMm.a

AWCTLPTYMm[3:0] Output Parity bits for the rest of the write address channela

AWRPTYMm Input Parity bit for AWREADYMm

AWUSERPTYMm Output Parity bit for sideband signalsa

AWVPTYMm Output Parity bit for AWVALIDMm

AXIMCORRm Output Correctable error detected on RDATAMm

AXIMFATALm[4:0] Output Fatal error detected on AXI master, per channel {R, AR, B, W, AW}

BCTLPTYMm[1:0] Input Parity for buffered response channela

BRPTYMm Output Parity bit for BREADYMm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-11
ID092411 Non-Confidential



Signal Descriptions 
A.5.3 AXI slave port

Table A-7 shows the AXI slave port signals for the L2 interface. With the exception of the 
ACLKENSm, all signals are only sampled or driven on CLKIN edges when ACLKENSm is 
asserted, see AMBA interface clocking on page 2-16 for more information.

BVPTYMm Input Parity bit for BVALIDMm

MERRADDRm[31:3]b Output Address of correctable error, doubleword 

RCTLPTYMm[1:0] Input Parity for rest of read data channela

RERRCODEMm[7:0] Input ECC code for RDATAMma

RRPTYMm Output Parity bit for RREADYMm

RVPTYMm Input Parity bit for RVALIDMm

WCTLPTYMm[2:0] Output Parity bits for the rest of the write data channela

WERRCODEMm[7:0] Output ECC code for WDATAMma

WRPTYMm Input Parity bit for WREADYMm

WVPTYMm Input Parity bit for WVALIDMm

a. This is an AXI extension signal.
b. This address bus is also used by other AMBA masters: PPX and PPH.

Table A-6 AXI master port error detection signals (continued)

Signal Direction Description

Table A-7 AXI slave port signals for the L2 interface

Signal Direction Description

ACLKENSm Input Clock enable for the AXI slave port.

Write Address Channel

AWADDRSm[31:0] Input Transfer start address.

AWBURSTSm[1:0] Input Write burst type.

AWCACHESm[3:0] Input Write address outer attribute information.

AWCSELSm[3:0] Input Memory type select data cache, instruction cache, BTCM or ATCM, one hot.a 

AWIDSm[7:0] Input The identification tag for the write address group of signals.

AWLENSm[3:0] Input Write transfer burst length. 

AWLOCKSm[1:0] Input Lock signal.

AWPROTSm[2:0] Input Protection information, privileged/normal access. 

AWREADYSm Output Address ready. The slave uses this signal to indicate that it can accept the address.

AWSIZESm[2:0] Input Indicates the size of the transfer.

AWVALIDSm Input Indicates address and control are valid.

Write Data Channel

WDATASm[63:0] Input Write data.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-12
ID092411 Non-Confidential



Signal Descriptions 
WIDSm[7:0] Input The identification tag for the write group of signals.

WLASTSm Input Indicates the last data transfer of a burst.

WREADYSm Output Indicates that the slave is ready to accept write data.

WSTRBSm[7:0] Input Write strobes used to indicate which byte lanes must be updated.

WVALIDSm Input Indicates address and control are valid.

Write Response Channel

BIDSm[7:0] Output The identification tag for the write response signal.

BREADYSm Input Indicates that the CPU is ready to accept write response.

BRESPSm[1:0] Output Write response.

BVALIDSm Output Indicates that a valid write response is available.

Read Address Channel

ARADDRSm[31:0] Input Instruction fetch burst start address.

ARBURSTSm[1:0] Input Burst type.

ARCACHESm[3:0] Input Read address outer attribute information.

ARIDSm[7:0] Input Identification tag for the read address group of signals.

ARLENSm[3:0] Input Instruction fetch burst length.

ARLOCKSm[1:0] Input Lock signal.

ARPROTSm[2:0] Input Protection information, privileged/normal access. 

ARREADYSm Output Address ready. The slave uses this signal to indicate that it can accept the address.

ARSIZESm[2:0] Input Indicates the size of the transfer.

ARCSELSm[3:0] Input Memory type select {data cache, instruction cache, BTCM or ATCM}, one hot.a 

ARVALIDSm Input Indicates address and control are valid.

Read Data Channel

RDATASm[63:0] Output Read data.

RIDSm[7:0] Output The identification tag for the read data group of signals.

RLASTSm Output Indicates the last transfer in a read burst.

RREADYSm Input Read ready signal indicating that the bus master can accept read data and response 
information.

RRESPSm[1:0] Output Read response.

RVALIDSm Output Indicates address and control are valid.

a. This is an AXI extension signal.

Table A-7 AXI slave port signals for the L2 interface (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-13
ID092411 Non-Confidential



Signal Descriptions 
A.5.4 AXI slave port error detection signals

Table A-8 shows the AXI slave port error detection signals. These signals are only generated if 
the processor is configured to include AXI bus parity. See Configurable options on page 1-6 for 
more information.

Table A-8 AXI slave port error detection signals

Signal Direction Description

ARADDRPTYSm[3:0] Input Parity bits for ARADDRSma

a. This is an AXI extension signal.

ARCTLPTYSm[3:0] Input Parity bits for the rest of the read address channela

ARRPTYSm Output Parity bit for ARREADYSm

ARUSERPTYSm Input Parity bit for sideband signalsa

ARVPTYSm Input Parity bit for ARVALIDSm

AWADDRPTYSm[3:0] Input Parity bits for AWADDRSma

AWCTLPTYSm[3:0] Input Parity bits for the rest of the write address channela

AWRPTYSm Output Party bit for AWREADYSm

AWUSERPTYSm Input Parity bit for sideband signalsa

AWVPTYSm Input Parity bit for AWVALIDSm

AXISCORRm Output Correctable error, write data channel

AXISFATALm[4:0] Output Fatal error, per channel.

BCTLPTYSm[1:0] Output Parity for buffered response channela

BRPTYSm Output Parity bit for BREADYSm

BVPTYSm Input Parity bit for BVALIDSm

RCTLPTYSm[1:0] Output Parity for rest of read data channela

RERRCODESm[7:0] Input ECC code for RDATASma

RRPTYSm Output Parity bit for RREADYSm

RVPTYSm Output Parity bit for RVALIDSm

SERRADDRm[22:3] Output Address of correctable error, within doubleword

SERRCSELm[3:0] Output Chip-select of correctable error.

WCTLPTYSm[2:0] Input Parity bits for rest of write data channela

WERRCODESm[7:0] Input ECC code for WDATAMma

WRPTYSm Output Parity bit for WREADYSm

WVPTYSm Input Parity bit for WVALIDSm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-14
ID092411 Non-Confidential



Signal Descriptions 
A.5.5 ACP slave port

Table A-9 shows the ACP slave port signals. 

Table A-9 ACP slave port signals

Signal Direction Description

ACLKENC Input Clock enable, shared between ACP slave and master port.

Write Address Channel

AWIDCS[1:0] Input The identification tag for the write address group of signals.

AWADDRCS[31:0] Input Transfer start address.

AWLENCS[3:0] Input Write transfer burst length.

AWSIZECS[2:0] Input Indicates the size of the transfer.

AWBURSTCS[1:0] Input Write burst type.

AWLOCKCS[1:0] Input Lock signal.

AWCACHECS[3:0] Input Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such as 
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions 
such as Normal, Non-cacheable used here.

AWPROTCS[2:0] Input Protection signals provide additional information about a bus access.

AWCOHERENTCS Input Require caches to be made coherent with this access.a

AWUSERCS[3:0] Input For transmission of other sideband information.a

AWVALIDCS Input Indicates address and control are valid.

AWREADYCS Output Address ready. The slave uses this signal to indicate it is ready to accept the address.

Write Response Channel

BIDCS[1:0] Output The identification tag for the write response signal.

BRESPCS[1:0] Output Write response.

BVALIDCS Output Indicates that a valid write response is available.

BREADYCS Input Indicates that the CPU is ready to accept write response.

BMISSCS[1:0] Output Access did not hit in either cache, or coherency not required. One bit for each CPU.a

BHITDIRTYCS[1:0] Output Access hit a dirty line, or Dormant CPU, and was not invalidated. One bit for each CPU.a

BUSERCS[3:0] Output For transmission of other sideband information.a

a. This is an AXI extension signal.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-15
ID092411 Non-Confidential



Signal Descriptions 
A.5.6 ACP slave port error detection signals

Table A-10 shows the ACP slave port error detection signals. These signals are only generated 
if the processor is configured to include AXI bus parity. See Configurable options on page 1-6 
for more information.

A.5.7 ACP master port

Table A-11 shows the ACP master port signals. 

Table A-10 ACP slave port error detection signals

Signal Direction Description

ACPSFATAL[1:0] Output Fatal error, per channel, {B,AW}

AWADDRPTYCS[3:0] Input Parity bits for AWADDRCSa

a. This is an AXI extension signal.

AWCTLPTYCS[3:0] Input Parity bits for the rest of the write address channela

AWRPTYCS Output Parity bit for AWREADYCS

AWUSERPTYCS Input Parity bit for sideband signalsa

AWVPTYCS Input Parity bit for AWVALIDCS

BCTLPTYCS[1:0] Output Parity for buffered response signala

BRPTYCS Output Parity bit for BREADYCS

BVPTYCS Output Parity bit for BVALIDCS

BUSERPTYCS Output Parity bit for sideband signalsa

Table A-11 ACP master port signals

Signal Direction Description

Write Address Channel

AWIDCM[1:0] Output The identification tag for the write address group of signals.

AWADDRCM[31:0] Output Transfer start address

AWLENCM[3:0] Output Write transfer burst length.

AWSIZECM[2:0] Output Indicates the size of the transfer.

AWBURSTCM[1:0] Output Write burst type.

AWLOCKCM[1:0] Output Lock signal.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-16
ID092411 Non-Confidential



Signal Descriptions 
A.5.8 ACP master port error detection signals

Table A-12 shows the ACP master port error detection signals. These signals are only generated 
if the processor is configured to include AXI bus parity. See Configurable options on page 1-6 
for more information.

AWCACHECM[3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such as 
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type 
descriptions such as Normal, Non-cacheable used here.

AWPROTCM[2:0] Output Protection type.

AWCOHERENTCM Output Require caches to be made coherent with this access.a

AWUSERCM[3:0] Output For transmission of other sideband information.a

AWVALIDCM Output Indicates address and control are valid.

AWREADYCM Input Address ready. The slave uses this signal to indicate it is ready to accept the address.

Write Response Channel

BIDCM[1:0] Input The identification tag for the write response signal.

BRESPCM[1:0] Input Write response

BUSERCM[3:0] Input For transmission of other sideband information.a

BVALIDCM Input Indicates that a valid write response is available.

BREADYCM Output Indicates that the CPU is ready to accept write response.

a. This is an AXI extension signal.

Table A-11 ACP master port signals (continued)

Signal Direction Description

Table A-12 ACP master port error detection signals

Signal Direction Description

AWVPTYCM Output Parity bit for AWVALIDCM

AWRPTYCM Input Parity bit for AWREADYCM

AWADDRPTYCM[3:0] Output Parity bits for AWADDRCMa

AWCTLPTYCM[3:0] Output Parity bits for the rest of the write address channela

AWUSERPTYCM Output Parity bit for sideband signalsa

BVPTYCM Input Parity bit for BVALIDCM
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-17
ID092411 Non-Confidential



Signal Descriptions 
A.5.9 AXI peripheral port

Table A-13 shows the AXI peripheral port signals. 

BRPTYCM Output Parity bit for BREADYCM

BCTLPTYCM[1:0] Input Parity for buffered response signala

BUSERPTYCM Input Parity bit for sideband signalsa

ACPMFATAL[1:0] Output Fatal error, per channel, {B,AW}

a. This is an AXI extension signal.

Table A-12 ACP master port error detection signals (continued)

Signal Direction Description

Table A-13 AXI peripheral port signals

Signal Direction Description

ACLKENPm Input Clock enable for the AXI peripheral port.

Write Address Channel

AWIDPm[3:0] Output The identification tag for the write address group of signals.

AWADDRPm[31:0] Output Transfer start address.

AWLENPm[3:0] Output Write transfer burst length.

AWSIZEPm[2:0] Output Indicates the size of the transfer.

AWBURSTPm[1:0] Output Write burst type.

AWLOCKPm[1:0] Output Lock signal.

AWCACHEPm[3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such 
as cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type 
descriptions such as Normal, Non-cacheable used here.

AWPROTPm[2:0] Output Protection type.

AWVALIDPm Output Indicates address and control are valid.

AWREADYPm Input Address ready. The slave uses this signal to indicate it is ready to accept the address.

Write Data Channel

WIDPm[3:0] Output The identification tag for the write data group of signals.

WDATAPm[31:0] Output Write data.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-18
ID092411 Non-Confidential



Signal Descriptions 
WSTRBPm[3:0] Output Write strobes used to indicate which byte lanes must be updated.

WLASTPm Output Indicates the last data transfer of a burst.

WVALIDPm Output Indicates address and control are valid.

WREADYPm Input Indicates that the slave is ready to accept write data.

Write Response Channel

BIDPm[3:0] Input The identification tag for the write response channel.

BRESPPm[1:0] Input Write response.

BVALIDPm Input Indicates that a valid write response is available.

BVPTYPm Input Parity bit for BVALIDPm

BREADYPm Output Indicates that the CPU is ready to accept a write response.

BRPTYPm Output Parity bit for BREADYPm

BCTLPTYPm[1:0] Input Parity for buffered response channel

Read Address Channel

ARIDPm[3:0] Output Identification tag for the read address group of signals.

ARADDRPm[31:0] Output Instruction fetch burst start address.

ARLENPm[3:0] Output Instruction fetch burst length.

ARSIZEPm[2:0] Output Indicates the size of the transfer.

ARBURSTPm[1:0] Output Burst type.

ARLOCKPm[1:0] Output Lock signal.

ARCACHEPm[3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the pre-ARMv6 terms such 
as cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type 
descriptions such as Normal, Non-cacheable used here.

ARPROTPm[2:0] Output Protection type.

ARVALIDPm Output Indicates address and control are valid.

ARREADYPm Input Address ready. The slave uses this signal to indicate it is ready to accept the address.

Read Data Channel

RIDPm[3:0] Input The identification tag for the read data group of signals.

Table A-13 AXI peripheral port signals (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-19
ID092411 Non-Confidential



Signal Descriptions 
A.5.10 AXI peripheral port error detection signals

Table A-14 shows the AXI peripheral port error detection signals. These signals are only 
generated if the processor is configured to include AXI bus parity. See Configurable options on 
page 1-6 for more information.

RDATAPm[31:0] Input Read data.

RRESPPm[1:0] Input Read response.

RLASTPm Input Indicates the last transfer in a read burst.

RVALIDPm Input Indicates that read data is available.

RREADYPm Output Read ready signal indicating that the bus master can accept read data and response 
information.

Table A-13 AXI peripheral port signals (continued)

Signal Direction Description

Table A-14 AXI peripheral port error detection signals

Signal Direction Description

ARADDRPTYPm[3:0] Output Parity bits for ARADDRPma

a. This is an AXI extension signal.

ARCTLPTYPm[3:0] Output Parity bits for the rest of the read address channela

ARRPTYPm Input Parity bit for ARREADYPm

ARVPTYPm Output Parity bit for ARVALIDPm

AWADDRPTYPm[3:0] Output Parity bits for AWADDRPma

AWCTLPTYPm[3:0] Output Parity bits for the rest of the write address channela

AWRPTYPm Input Parity bit for AWREADYPm

AWVPTYPm Output Parity bit for AWVALIDPm

PPXCORRm Output Correctable error on RRESPPmb 

b. Address is reported on MERRADDRm, listed in Table A-6 on page A-11.

PPXFATALm[4:0] Output Fatal error, one bit for each channel {R,AR,B,W,AW}

RCTLPTYPm[1:0] Input Parity bits for the rest of the read data channela

RERRCODEPm[6:0] Input ECC code for RDATAPma

RRPTYPm Output Parity bit for RREADYPm

RVPTYPm Input Parity bit for RVALIDPm

WCTLPTYPm[2:0] Output Parity bits for the rest of the write data channela

WERRCODEPm[6:0] Output ECC code for WDATAPma

WRPTYPm Input Parity bit for WREADYPm

WVPTYPm Output Parity bit for WVALIDPm
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-20
ID092411 Non-Confidential



Signal Descriptions 
A.5.11 AHB peripheral port

Table A-15 shows the AHB peripheral port signals. 

A.5.12 AHB peripheral port error detection signals

Table A-16 shows the AHB peripheral port error detection signals. These signals are only 
generated if the processor is configured to include AHB bus parity. See Configurable options 
on page 1-6 for more information.

Table A-15 AHB peripheral port signals

Signal Direction Description

Address Phase

HCLKENPm Input Synchronous enable for AHB transfers.

HADDRPm[31:0] Output System address bus

HBURSTPm[2:0] Output Burst type

HMASTLOCKPm Output Indicates that the current transfer is part of a locked sequence

HPROTPm[3:0] Output Protection type

HSIZEPm[2:0] Output Indicates the size of the transfer.

HTRANSPm[1:0] Output Transfer type

HWDATAPm[31:0] Output Write data

HWRITEPm Output Indicates the direction of the transfer

Data phase

HRDATAPm[31:0] Input Read data

HREADYPm Input Indicates that the previous transfer is finished

HRESPPm Input Transfer response

Table A-16 AHB peripheral port error detection signals

Signal Direction Description

HWERRCODEPm[6:0] Output ECC code for HWDATAPm.

HADDRPTYPm[3:0] Output Parity bit for HADRRPm.

HCTLPTYPm[1:0] Output Parity bits for the rest of the data channel.

HRERRCODEPm[6:0] Input ECC code for HRDATAPm.

HRESPPTYPm Input Parity bit for HREADYPm and HRESPPma.

PPHFATALm Output Fatal error on:
• parity computed for HREADYPm and HRESPPm
• two bit error on HRDATAPm.

PPHCORRm Output Correctable error on HRDATAPm. Address is reported on MERRADDRm.

a. This is not parity for HRESP alone, even though that might be suggested by the name.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-21
ID092411 Non-Confidential



Signal Descriptions 
A.6 TCM interface signals
Table A-17 shows the ATCM port signals.

Table A-18 shows the B0TCM port signals.

Table A-17 ATCM port signals

Signal Direction Description

ATCDATAINm[63:0] Input Data from ATCM

ATCPARITYINm[13:0] Input ECC code from ATCM

ATCERRORm Input Error detected by ATCMa

a. This signal is ignored when bit [0] of the Auxiliary Control Register is set to 0, see c1, Auxiliary 
Control Register on page 4-41.

ATCWAITm Input Wait from ATCM

ATCLATEERRORm Input Late error from ATCMa

ATCRETRYm Input Access to ATCM must be retrieda

ATCADDRPTYm Output Parity formed from ATCM address outputb

b. Only generated if the processor is configured to include TCM address bus parity.

ATCEN0m Output Enable for ATCM lower word, bit range [31:0]

ATCEN1m Output Enable for ATCM upper word, bit range [64:32]

ATCWEm Output Write enable for ATCM

ATCADDRm[22:3] Output Address for ATCM data RAM

ATCBYTEWRm[7:0] Output Byte strobes for direct write

ATCSEQm Output ATCM RAM access is sequential

ATCDATAOUTm[63:0] Output Write data for ATCM data RAM

ATCPARITYOUTm[13:0] Output Write ECC code for ATCM

ATCACCTYPEm[2:0] Output Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

c. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM 
signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent 
to the MBIST controller to indicate this.

Table A-18 B0TCM port signals

Signal Direction Description

B0TCDATAINm[63:0] Input Data from B0TCM

B0TCPARITYINm[13:0] Input ECC code from B0TCM

B0TCERRORm Input Error detected by B0TCMa

B0TCWAITm Input Wait from B0TCM
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-22
ID092411 Non-Confidential



Signal Descriptions 
Table A-19 shows the B1TCM port signals.

B0TCLATEERRORm Input Late error from B0TCMa

B0TCRETRYm Input Access to B1TCM must be retrieda

B0TCADDRPTYm Output Parity formed from B0TCM address outputb

B0TCWEm Output Write enable for B0TCM

B0TCEN0m Output Enable for B0TCM lower word, bit range [31:0]

B0TCEN1m Output Enable for B0TCM upper word, bit range [64:32]

B0TCADDRm[22:3] Output Address for B0TCM data RAM

B0TCBYTEWRm[7:0] Output Byte strobes for direct write

B0TCSEQm Output B0TCM RAM access is sequential

B0TCDATAOUTm[63:0] Output Write data for B0TCM data RAM

B0TCPARITYOUTm[13:0] Output Write ECC code for B0TCM

B0TCACCTYPEm[2:0] Output Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

a. This signal is ignored when bit [1] of the Auxiliary Control Register is set to 0, see c1, Auxiliary 
Control Register on page 4-41.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM 

signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent to 
the MBIST controller to indicate this.

Table A-19 B1TCM port signals

Signal Direction Description

B1TCDATAINm[63:0] Input Data from B1TCM

B1TCPARITYINm[13:0] Input ECC code from B1TCM

B1TCERRORm Input Error detected by B1TCMa

B1TCRETRYm Input Access to B1TCM must be retrieda

B1TCLATEERRORm Input Late error from B1TCMa

B1TCWAITm Input Wait from B1TCM

B1TCADDRPTYm Output Parity formed from B1TCM address outputb

B1TCWEm Output Write enable for B1TCM

B1TCEN0m Output Enable for B1TCM lower word, bit range [31:0]

B1TCEN1m Output Enable for B1TCM upper word, bit range [64:32]

Table A-18 B0TCM port signals (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-23
ID092411 Non-Confidential



Signal Descriptions 
B1TCADDRm[22:3] Output Address for B1TCM data RAM

B1TCBYTEWRm[7:0] Output Byte strobes for direct write

B1TCSEQm Output B1TCM RAM access is sequential

B1TCDATAOUTm[63:0] Output Write data for B1TCM data RAM

B1TCPARITYOUTm[13:0] Output Write ECC code for B1TCM

B1TCACCTYPEm[2:0] Output Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

a. This signal is ignored when bit [2] of the Auxiliary Control Register is set to 0, see c1, Auxiliary 
Control Register on page 4-41.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM 

signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent to 
the MBIST controller to indicate this.

Table A-19 B1TCM port signals (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-24
ID092411 Non-Confidential



Signal Descriptions 
A.7 Redundant CPU signals
Table A-20 shows the redundant CPU signals. If you are implementing a redundant CPU 
configuration, contact ARM for more information about the functionality of these signals.

Table A-20 Redundant CPU signals

Signal Direction

CLKIN1 Input

DCCMINP[7:0] Input

DCCMINP2[7:0] Input

DCCMOUT[7:0] Output

DCCMOUT2[7:0] Output
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-25
ID092411 Non-Confidential



Signal Descriptions 
A.8 Debug interface signals
Table A-21 shows the debug interface signals. With the exception of PCLKENDBG, 
DBGRESETmn, and PRESETDBGmn, all these signals are only sampled or driven on 
CLKIN edges when PCLKENDBG is asserted.

Table A-22 shows the debug miscellaneous signals.

Table A-21 Debug interface signals

Signal Direction Description

PCLKENDBG Input Clock enable for APB buses.

PSELDBGm Input Selects the external debug interface.

PADDRDBGm[11:2] Input Programming address.

PADDRDBG31m Input Programming address.

PRDATADBGm[31:0] Output Read data bus. 

PWDATADBGm[31:0] Input Write data bus.

PENABLEDBGm Input Indicates second, and subsequent, cycle of a transfer.

PREADYDBGm Output Extends a APB transfer by the inserting wait states.

PSLVERRDBGm Output Slave-generated error response.

PWRITEDBGm Input Indicates access is a write transfer.
Distinguishes between a read, LOW, and a write, HIGH.

PRESETDBGmn Input Reset debug domain debug logic.a

a. Can be asserted asynchronously.

DBGRESETmn Input Reset core domain debug logic.a

Table A-22 Debug miscellaneous signals

Signal Direction Description

DBGENm Input Debug enablea

NIDENm Input Non-invasive debug enablea

EDBGRQm Input External debug requesta

DBGACKm Output Debug acknowledge

DBGRSTREQm Output Request for reset from debug logic

DBGTRIGGERm Output External debug request taken

COMMRXm Output DTRRX full

COMMTXm Output DTRTX empty

DBGRESTARTm Input External restart requesta

DBGRESTARTEDm Output Handshake for DBGRESTARTm

DBGNOPWRDWN Output No power-down request
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-26
ID092411 Non-Confidential



Signal Descriptions 
DBGROMADDR[31:12] Input Debug ROM physical address

DBGROMADDRV Input Debug ROM physical address valid

DBGSELFADDRm[31:12] Input Debug self-address offset

DBGSELFADDRVm Input Debug self-address offset valid

a. Can be asserted asynchronously.

Table A-22 Debug miscellaneous signals (continued)

Signal Direction Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-27
ID092411 Non-Confidential



Signal Descriptions 
A.9 ETM interface signals
Table A-23 shows the ETM interface signals.

Table A-23 ETM interface signals

Signal Direction Description

ETMICTLm[13:0] Output ETM instruction control bus

ETMIAm[31:1] Output ETM instruction address

ETMDCTLm[11:0] Output ETM data control bus

ETMDAm[31:0] Output ETM data address

ETMDDm[63:0] Output ETM data-data

ETMCIDm[31:0] Output Current value of processor CID register

ETMWFIPENDINGm Output Core is attempting to enter standby state because of a WFI or WFE

EVNTBUSm[54:0] Output Performance monitor unit output

ETMPWRUPm Input Power up ETM interface

nETMWFIREADYm Input ETM FIFO is empty, CPU can enter WFI state

ETMEXTOUTm[1:0] Input ETM detected events
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-28
ID092411 Non-Confidential



Signal Descriptions 
A.10 Test signals
Table A-24 shows the test signals.

Table A-24 Test signals

Signal Direction Description

SEm Input Scan Enable

RSTBYPASSm Input Bypass pipelined reset
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-29
ID092411 Non-Confidential



Signal Descriptions 
A.11 MBIST signals
Table A-25 shows the MBIST signals.

Table A-25 MBIST signals

Signal Direction Description

MBTESTONm Input MBIST test is enabled

MBISTDINm[77:0] Input MBIST data in

MBISTADDRm[19:0] Input MBIST address

MBISTCEm Input MBIST chip enable

MBISTSELm[4:0] Input MBIST chip select

MBISTWEm[7:0] Input MBIST write enable

MBISTDOUTm[77:0] Output MBIST data out
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-30
ID092411 Non-Confidential



Signal Descriptions 
A.12 Validation signals
Table A-26 shows the validation signals.

Table A-26 Validation signals

Signal Direction Description

VALEDBGRQm Output Debug request

nVALIRQm Output Request for an interrupt

nVALFIQm Output Request for a Fast Interrupt

nVALRESETm Output Request for a reset
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-31
ID092411 Non-Confidential



Signal Descriptions 
A.13 FPU signals
Table A-27 shows the FPU signals. These signals are only driven if the processor is configured 
to include the floating-point logic.

Table A-27 FPU signals

Signal Direction Description

FPIXCm Output Masked floating-point inexact exception

FPOFCm Output Masked floating-point overflow exception

FPUFCm Output Masked floating-point underflow exception

FPIOCm Output Masked floating-point invalid operation exception

FPDZCm Output Masked floating-point divide-by-zero exception

FPIDCm Output Masked floating-point input denormal exception
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-32
ID092411 Non-Confidential



Signal Descriptions 
A.14 Split/Lock
Table A-28 shows the Split/Lock signals. If you are implementing a Split/Lock configuration, 
contact ARM for more information about the functionality of these signals.

Table A-28 Split/Lock signals

Signal Direction

SLSPLIT Input

SLRESETn Input

SLCLAMP Input

SLERRACPn Input

SLERRDBGn Input
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-33
ID092411 Non-Confidential



Signal Descriptions 
A.15 Power modes
Table A-29 shows the Power mode signal. 

Table A-29 Power mode signal

Signal Direction Description

RAMCONTROLm[7:0] - Wires only – connected to cortexr5_caches_rams<m> module for use controlling 
physical RAM features of CPU m, where m is 0 or 1, such as retention states.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. A-34
ID092411 Non-Confidential



Appendix B 
Cycle Timings and Interlock Behavior

This appendix describes the cycle timings and interlock behavior of instructions on the 
processor. It contains the following sections:
• About cycle timings and interlock behavior on page B-3
• Register interlock examples on page B-6
• Data processing instructions on page B-7
• QADD, QDADD, QSUB, and QDSUB instructions on page B-9
• Media data-processing on page B-10
• Sum of Absolute Differences (SAD) on page B-11
• Multiplies on page B-12
• Divide on page B-14
• Branches on page B-15
• Processor state updating instructions on page B-16
• Single load and store instructions on page B-17
• Load and Store Double instructions on page B-19
• Load and Store Multiple instructions on page B-20
• RFE and SRS instructions on page B-23
• Synchronization instructions on page B-24
• Coprocessor instructions on page B-25
• SVC, BKPT, Undefined, and Prefetch Aborted instructions on page B-26
• Miscellaneous instructions on page B-27
• Floating-point register transfer instructions on page B-28
• Floating-point load/store instructions on page B-29
• Floating-point single-precision data processing instructions on page B-31
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-1
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
• Floating-point double-precision data processing instructions on page B-32
• Dual issue on page B-33.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-2
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.1 About cycle timings and interlock behavior
Complex instruction dependencies and memory system interactions make it impossible to 
describe briefly the exact cycle timing behavior for all instructions in all circumstances. The 
timings described in this chapter are accurate in most cases. If precise timings are required, you 
must use a cycle-accurate model of the processor.

Unless stated otherwise, cycle counts and result latencies that this chapter describes are 
best-case numbers. They assume:

• no outstanding data dependencies between the current instruction and a previous 
instruction

• the instruction does not encounter any resource conflicts

• all data accesses hit in the data cache, and do not cross protection region boundaries

• all instruction accesses hit in the instruction cache.

This section describes:
• Instruction execution overview
• Conditional instructions on page B-4
• Flag-setting instructions on page B-4
• Definition of terms on page B-4.
• Assembler language syntax on page B-5.

B.1.1 Instruction execution overview

The instruction execution pipeline has four stages, Iss, Ex1, Ex2, and Wr.

Extensive forwarding to the end of the Iss, Ex1, and Ex2 stages enables many dependent 
instruction sequences to run without pipeline stalls. General forwarding occurs from the end of 
the Ex2 and Wr pipeline stages. In addition, the multiplier contains an internal multiply 
accumulate forwarding path. The address generation unit also contains an internal forwarding 
path. 

Many instructions do not require data from a register until the Ex2 stage. All result latencies are 
given as the number of cycles until the register is available for a following instruction in the Ex2 
stage. Most ALU operations require their source registers at the start of the Ex2 stage, and have 
a result latency of one. For example, the following sequence takes two cycles:

ADD R1,R3,R4 ;Result latency one
ADD R5,R2,R1 ;Register R1 required by ALU

The PC is the only register that result latency does not affect. An instruction that alters the PC 
never causes a pipeline stall because of interlocking with a subsequent instruction that reads the 
PC.

Most loads have a result latency of two or higher, because they do not forward their results until 
the Wr stage. For example, the following sequence takes three cycles:

LDR R1, [R2] ;Result latency two
ADD R3, R3, R1 ;Register R1 required by ALU

If a subsequent instruction requires the register at the end of the Iss stage then an extra cycle 
must be added to the result latency of the instruction producing the required register. 
Instructions that require a register at the end of these stages are specified by describing that 
register as an Early Reg. The following sequence, requiring an Early Reg, takes four cycles:
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-3
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
LDR R1, [R2] ;Result latency two
ADD R3, R3, R1 LSL#6 ;plus one because Register R1 is Early

The following sequence where R1 is a Late Reg takes two cycles:

LDR R1, [R2] ;Result latency two minus one cycles
STR R1, [R3] ;no penalty because R1 is a Late register

The following sequence where R1 is a Very Early Reg takes four cycles:

ADD R3, R1, R2 ;Result latency one plus two cycles
LDR R4, [R3] ;plus two because register R3 is Very Early

B.1.2 Conditional instructions

Most instructions do not take more or fewer cycles to execute if they fail their condition codes. 
The exceptions to this are:
• instructions that alter the PC, such as branches
• integer divide instructions, that require only one execute cycle.

The result latency of most instructions that fail their condition codes is one. The exceptions to 
this are:
• all load and store instructions, that have their result latency unaffected
• integer divide instructions, that have a result latency of three.

B.1.3 Flag-setting instructions

Most instructions do not take more or fewer cycles to execute if they are flag-setting. The 
exceptions to this are certain multiply instructions.

B.1.4 Definition of terms

Table B-1 gives descriptions of cycle timing terms used in this appendix.

Table B-1 Definition of cycle timing terms

Term Description

Memory Cycles This is the number of cycles during which an instruction sends a memory access to the cache.

Cycles This is the minimum number of cycles required to issue an instruction. Issue cycles that produce memory 
accesses to the cache are included, so Cycles is always greater than or equal to Memory Cycles.

Result Latency This is the number of cycles before the result of this instruction is available to a Normal Reg of the following 
instruction. When the Result Latency of an instruction is greater than Cycles and the following instruction 
requires the result, the following instruction stalls for a number of cycles equal to Result Latency minus Cycles. 
If this value is negative, there are zero stall cycles.

Note
 The Result Latency is counted from the first cycle of an instruction.

Normal Reg The specified registers are required at the start of the Ex2 stage.

Late Reg The specified registers are not required until the start of the Wr stage. Subtract one cycle from the Result Latency 
of the instruction producing this register.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-4
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.1.5 Assembler language syntax

The syntax used throughout this chapter is unified assembler and the timings apply to ARM and 
Thumb instructions.

Early Reg The specified registers are required at the start of the Ex1 stage. Add one cycle to the Result Latency of the 
instruction producing this register.

Very Early Reg The specified registers are required at the start of the Iss stage. Add two cycles to the Result Latency of the 
instruction producing this register, or one cycle if the instruction producing this register is an LDM, LDR, LDRD, 
LDREX, or LDRT. The lower Result Latency does not apply if this register is the base register of the load instruction 
producing this register, or if the load instruction is an LDRB, LDRBT, LDRH, LDRSB, or LDRSH.

Interlock There is a data dependency between two instructions in the pipeline, resulting in the Iss stage being stalled until 
the processor resolves the dependency.

Table B-1 Definition of cycle timing terms  (continued)

Term Description
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-5
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.2 Register interlock examples
Table B-2 shows register interlock examples using LDR and ADD instructions.

LDR instructions take one cycle, have a result latency of two, and require their base register as a 
Very Early Reg.

ADD instructions take one cycle and have a result latency of one.

Table B-2 Register interlock examples

Instruction 
sequence Behavior

LDR R1, [R2]
ADD R6, R5, R4

Takes two cycles because there are no register dependencies.

ADD R1, R2, R3
ADD R9, R6, R1

Takes two cycles because ADD instructions have a result latency of one.

LDR R1, [R2]
ADD R6, R5, R1

Takes three cycles because of the result latency of R1.

ADD R2, R5, R6
LDR R1, [R2]

Takes four cycles because of the use of the result of R2 as a Very Early Reg.

LDR R1, [R2]
LDR R5, [R1]

Takes four cycles because of the result latency of R1, the use of the result of R1 as a Very Early Reg, 
and the use of an LDR to generate R1.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-6
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.3 Data processing instructions
This section describes the cycle timing behavior for the ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP, 
EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, RSB, RSC, SBC, SUB, SUBW, TEQ, and TST 
instructions.

This section describes:
• Cycle counts if destination is not PC
• Cycle counts if destination is the PC
• Example interlocks on page B-8

B.3.1 Cycle counts if destination is not PC

Table B-3 shows the cycle timing behavior for data processing instructions if their destination 
is not the PC. You can substitute ADD with any of the data processing instructions identified in 
the opening paragraph of this section.

B.3.2 Cycle counts if destination is the PC

Table B-4 shows the cycle timing behavior for data processing instructions if their destination 
is the PC. You can substitute ADD with any data processing instruction except for a CLZ. A CLZ 
with the PC as the destination is an Unpredictable instruction.

For condition code failing cycle counts, the cycles for the non-PC destination variants must be 
used.

Table B-3 Data Processing Instruction cycle timing behavior if destination is not PC

Example instruction Cycles Early 
Reg

Late 
Reg

Result 
latency Comments

ADD <Rd>, <Rn>, #<immed> 1 - - 1 Normal cases.

ADD <Rd>, <Rn>, <Rm> 1 - - 1

ADD <Rd>, <Rn>, <Rm>, LSL #<immed> 1 <Rm> - 1 Requires a shifted source register.

ADD <Rd>, <Rn>, <Rm>, LSL <Rs> 1 <Rm>, <Rs> - 1 Requires a register controlled shifted 
source register.

MOV <Rd>, <Rm> 1 - <Rm> 1 Simple MOV case. Must not set the flags 
or require a shifted source register.

Table B-4 Data Processing instruction cycle timing behavior if destination is the PC

Example instruction Cycles Early 
Reg

Late 
Reg

Result 
latency Comments

ADD pc, <Rn>, #<immed> 9 - - - Normal cases to PC

ADD pc, <Rn>, <Rm> 9 - - -

ADD pc, <Rn>, <Rm>, LSL #<immed> 9 <Rm> - - Requires a shifted source register

ADD pc, <Rn>, <Rm>, LSL <Rs> 9 <Rm>, 
<Rs>

- - Requires a register controlled shifted 
source register
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-7
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.3.3 Example interlocks

Most data processing instructions are single-cycle and can be executed back-to-back without 
interlock cycles, even if there are data dependencies between them. The exceptions to this are 
when shifts are used.

Shifter

The registers that the shifter requires are Early Regs and require an additional cycle of result 
availability before use. For example, the following sequence introduces a 1-cycle interlock, and 
takes three cycles to execute:

ADD R1,R2,R3
ADD R4,R5,R1 LSL #1

The second source register, that is not shifted, does not incur an extra data dependency check. 
Therefore, the following sequence takes two cycles to execute:

ADD R1,R2,R3
ADD R4,R1,R9 LSL #1

Register controlled shifts

The register containing the shift distance is an Early Reg. For example, the following sequence 
takes three cycles to execute:

ADD R1, R2, R3
ADD R4, R2, R4, LSL R1
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-8
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.4 QADD, QDADD, QSUB, and QDSUB instructions
This section describes the cycle timing behavior for the QADD, QDADD, QSUB, and QDSUB instructions.

These instructions perform saturating arithmetic. They have a result latency of two. The QDADD 
and QDSUB instructions must double and saturate the register <Rn> before the addition. This 
register is an Early Reg.

Table B-5 shows the cycle timing behavior for QADD, QDADD, QSUB, and QDSUB instructions.

Table B-5 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior

Instructions Cycles Early Reg Result latency

QADD, QSUB 1 - 2

QDADD, QDSUB 1 <Rn> 2
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-9
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.5 Media data-processing
Table B-6 shows media data-processing instructions and gives their cycle timing behavior.

All media data-processing instructions are single-cycle issue instructions. These instructions 
have result latencies of one or two cycles. Some of the instructions require an input register to 
be shifted, or manipulated in some other way before use and therefore are marked as requiring 
an Early Reg.

Table B-6 Media data-processing instructions cycle timing behavior

Instructions Cycles Early Reg Result latency

SADD16, SSUB16, SADD8, SSUB8 1 - 1

UADD16, USUB16, UADD8, USUB8 1 - 1

SEL 1 - 1

QADD16, QSUB16, QADD8, QSUB8 1 - 2

SHADD16, SHSUB16, SHADD8, SHSUB8 1 - 1

UQADD16, UQSUB16, UQADD8, UQSUB8 1 - 2

UHADD16, UHSUB16, UHADD8, UHSUB8 1 - 1

SSAT16, USAT16 1 <Rn> 1

SASX, SSAX 1 - 1

UASX, USAX 1 - 1

SXTAB, SXTAB16, SXTAH 1 <Rm> 1

SXTB, SXTB16, SXTH 1 <Rm>a

a. A shift of zero makes <Rm> a Normal Reg for these instructions.

1

UXTB, UXTB16, UXTH 1 <Rm>a 1

UXTAB, UXTAB16, UXTAH 1 <Rm> 1

REV, REV16, REVSH, RBIT 1 <Rm> 1

PKHBT, PKHTB 1 <Rm> 1

SSAT, USAT 1 <Rm> 1

QASX, QSAX 1 - 2

SHASX, SHSAX 1 - 1

UQASX, UQSAX 1 - 2

UHASX, UHSAX 1 - 1

BFC 1 <Rd> 1

SBFX, UBFX 1 <Rn> 1

BFI 1 <Rd>, <Rn> 1
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-10
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.6 Sum of Absolute Differences (SAD)
Table B-7 shows SAD instructions and gives their cycle timing behavior.

B.6.1 Example interlocks

Table B-8 shows interlock examples using USAD8 and USADA8 instructions.

Table B-7 Sum of absolute differences instruction timing behavior

Instructions Cycles Early Reg Result latency

USAD8 1 <Rn>, <Rm> 2a

a. Result latency is one fewer if the destination is the 
accumulate for a subsequent USADA8. 

USADA8 1 <Rn>, <Rm> 2a

Table B-8 Example interlocks

Instruction sequence Behavior

USAD8 R1,R2,R3
ADD R5,R6,R1

Takes three cycles because USAD8 has a Result Latency of two, and the ADD requires 
the result of the USAD8 instruction.

USAD8 R1,R2,R3
MOV R9,R9
ADD R5,R6,R1

Takes three cycles. The MOV instruction is scheduled during the Result Latency of 
the USAD8 instruction.

USAD8 R1,R2,R3
USADA8 R1,R4,R5,R1

Takes two cycles. The Result Latency is one less because the result is used as the 
accumulate for a subsequent USADA8 instruction.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-11
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.7 Multiplies
Most multiply operations cannot forward their result early, except as the accumulate value for a 
subsequent multiply. For a subsequent multiply accumulate the result is available one cycle 
earlier than for all other uses of the result.

Certain multiplies require:
• more than one cycle to execute
• more than one pipeline issue to produce a result.

The multiplicand and multiplier are required as Early Regs because they are both required at the 
end of the Iss stage.

Flag-setting multiplies followed by a conditional instruction interlock the conditional 
instruction for one cycle, or two cycles if the instruction is a conditional multiply. Flag-setting 
multiplies followed by a flag-setting instruction interlock the flag-setting instruction for one 
cycle, unless the instruction is a flag-setting multiply in which case there is no interlock.

Table B-9 shows the cycle timing behavior of example multiply instructions.

Table B-9 Example multiply instruction cycle timing behavior

Example 
instruction Cycles Early Reg Late Reg Result latency

MUL(S) 2 <Rn>, <Rm> - 3

MLA(S), MLS 2 <Rn>, <Rm> <Ra> 3

SMULL(S) 2 <Rn>, <Rm> - 3, 3

UMULL(S) 2 <Rn>, <Rm> - 3, 3

SMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

UMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

SMULxy 1 <Rn>, <Rm> - 2

SMLAxy 1 <Rn>, <Rm> - 2

SMULWy 1 <Rn>, <Rm> - 2

SMLAWy 1 <Rn>, <Rm> - 2

SMLALxy 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

SMUAD, SMUADX 1 <Rn>, <Rm> - 2

SMLAD, SMLADX 1 <Rn>, <Rm> - 2

SMUSD, SMUSDX 1 <Rn>, <Rm> - 2

SMLSD, SMLSDX 1 <Rn>, <Rm> - 2

SMMUL, SMMULR 2 <Rn>, <Rm> - 3

SMMLA, SMMLAR 2 <Rn>, <Rm> <Ra> 3

SMMLS, SMMLSR 2 <Rn>, <Rm> <Ra> 3
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-12
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
Note
 Result Latency is one less if the result is used as the accumulate value for a subsequent multiply 
accumulate. This only applies if the result is the same width as the accumulate value, that is 32 
or 64 bits.

SMLALD, SMLALDX 1 <Rn>, <Rm> - 2, 2

SMLSLD, SMLSLDX 1 <Rn>, <Rm> - 2, 2

UMAAL 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

Table B-9 Example multiply instruction cycle timing behavior (continued)

Example 
instruction Cycles Early Reg Late Reg Result latency
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-13
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.8 Divide
This section describes the cycle timing behavior of the UDIV and SDIV instructions.

The divider unit is separate from the main execute pipeline so the UDIV and SDIV instructions 
require one cycle to issue. They execute out-of-order relative to the rest of the pipeline, and 
require an additional issue cycle at the end of the divide operation to write the result to the 
destination register. This additional cycle is not required if the divide instruction fails its 
condition code. 

Result Latency for a UDIV instruction A divided by B is given by:

Result Latency for a SDIV instruction A divided by B is given by:

Note
 • A divide instruction that fails its condition code or attempts to divide by zero has a Result 

Latency of three.

• The value of the (clz(B) - clz(A) + 1)/2 component of these equations must be rounded 
down.

• The clz(x) function counts the number of leading zeros in the 32-bit value x. If x is 
negative, it is negated before this count occurs.

2
clz(B) - clz(A) + 1

,0Result latency = 3 + max ( ) )(

2
clz(B) - clz(A) + 1

,0Result latency = 4 + max ( ) )(
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-14
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.9 Branches
This section describes the cycle timing behavior for the B, BL, BLX, BX, BXJ, CBNZ, CBZ, TBB, and TBH 
instructions. Branches are subject to dynamic and return stack predictions. Table B-10 shows 
example branch instructions and their cycle timing behavior.

Table B-10 Branch instruction cycle timing behavior

Example instruction Cycles Memory 
cycles Comments

B<label>, BL<label>a, BLX<label>a 1 - Correct dynamic prediction

8 - Incorrect dynamic prediction

BX <Rm>b 1 - Correct return stack prediction

9 - Incorrect return stack prediction

BX <cond> <Rm>b 1 - Correct condition prediction and correct return stack prediction

8 - Incorrect condition prediction

9 - Correct condition prediction and incorrect return stack prediction

BXJ <cond> <Rm> 1 - Condition code fails

9 - Condition code passes

BLX <Rm> 9 - -

BLX <cond> <Rm> 1 - Condition code fails

9 - Condition code passes

CBZ <Rn>, <label>, CBNZ <Rn>, <label> 1 - Correct condition prediction

8 - Incorrectly predicted

TBB [<Rn>, <Rm>]c 9 1 Condition code fails

9 1 Condition code passes

TBH [<Rn>, <Rm>, LSL#1]c 9 1 Condition code fails

9 1 Condition code passes

a. Return stack push.
b. Return stack pop, if condition passes.
c. <Rn> and <Rm> are Very Early Regs.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-15
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.10 Processor state updating instructions
This section describes the cycle timing behavior for the MSR, MRS, CPS, and SETEND instructions. 
Table B-11 shows processor state updating instructions and their cycle timing behavior.

Table B-11 Processor state updating instructions cycle timing behavior

Instruction Cycles Comments

MRS 1 All MRS instructions

MSR SPSR 1 All MSR instructions to the SPSR

MSR 5 All other MSR instructions to the CPSR

CPS<effect> <iflags> 1 Interrupt masks only

CPS<effect> <iflags>, #<mode> 1 Mode changing

SETEND 1 -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-16
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.11 Single load and store instructions
This section describes the cycle timing behavior for LDR, LDRHT, LDRSBT, LDRSHT, LDRT, LDRB, LDRBT, 
LDRSB, LDRH, LDRSH, STR, STRT, STRB, STRBT, STRH, and PLD instructions.

Table B-12 shows the cycle timing behavior for stores and loads, other than loads to the PC. You 
can replace LDR with any of these single load or store instructions. The following rules apply:

• They are normally single-cycle issue. Both the base and any offset register are Very Early 
Regs.

• They are 3-cycle issue if pre-increment addressing with either a negative register offset or 
a shift other than LSL #1, 2 or 3 is used. Both the base and any offset register are Very 
Early Regs.

• Accesses to addresses not aligned to the access size that cross a 64-bit aligned boundary 
generate two memory accesses, and require an additional cycle to issue. This extra cycle 
is required if the final address is potentially unaligned, even if the final address turns out 
to be aligned.

• PLD (data preload hint instructions) have cycle timing behavior as for load instructions. 
Because they have no destination register, the result latency is not-applicable for such 
instructions.

• For store instructions <Rt> is always a Late Reg.

Table B-13 shows the cycle timing behavior for loads to the PC.

Table B-12 Cycle timing behavior for stores and loads, other than loads to the PC

Example instruction Cycles Memory 
cycles

Result latency 
(LDR)

Result latency 
(base register) Comments

LDR <Rt>, <addr_md_1cycle>a 1 1 2 1 Aligned access

LDR <Rt>, <addr_md_3cycle>a 3 1 4 3 Aligned access

LDR <Rt>, <addr_md_1cycle>a 2 2 3 2 Potentially unaligned access

LDR <Rt>, <addr_md_3cycle>a 4 2 5 4 Potentially unaligned access

a. See Table B-14 on page B-18 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>.

Table B-13 Cycle timing behavior for loads to the PC

Example instruction Cycles Memory 
cycles

Result 
latency Comments

LDR pc, [sp, #<imm>] (!) 1 1 - Correctly return stack predicted, or conditional 
predicted correctly

LDR pc, [sp], #<imm> 1 1 -

LDR pc, [sp, #<imm>] (!) 9 1 - Return stack mispredicted, conditional predicted 
correctly

LDR pc, [sp], #<imm> 9 1 -

LDR <cond> pc, [sp, #<imm>] (!) 8 1 - Conditional predicted incorrectly, but return 
stack predicted correctly

LDR <cond> pc, [sp], #cns 8 1 -

LDR pc, <addr_md_1cycle>a 9 1 - -

LDR pc, <addr_md_3cycle>a 11 1 - -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-17
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
Only cycle times for aligned accesses are given because Unaligned accesses to the PC are not 
supported.

The processor includes a 4-entry return stack that can predict procedure returns. Any LDR 
instruction to the PC with an immediate post-indexed offset of plus four, and the stack pointer 
R13 as the base register is considered a procedure return.

Table B-14 shows the explanation of <addr_md_1cycle> and <addr_md_3cycle> used in 
Table B-12 on page B-17 and Table B-13 on page B-17.

B.11.1 Base register update

The base register update for load or store instructions occurs in the ALU pipeline. To prevent an 
interlock for back-to-back load or store instructions reusing the same base register, there is a 
local forwarding path to recycle the updated base register around the address generator. This 
only applies when the load or store instruction with base write-back uses pre-increment 
addressing, and is a single load or store instruction that is not a load or store double instruction 
or load or store multiple instruction.

For example, with R2 aligned the following instruction sequence take three cycles to execute:

LDR R5, [R2, #4]!
LDR R6, [R2, #0x10]!
LDR R7, [R2, #0x20]!

a. See Table B-14 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>. For condition code failing cycle counts, you must 
use the cycles for the non-PC destination variants.

Table B-14 <addr_md_1cycle> and <addr_md_3cycle> LDR example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_1cycle>

LDR <Rt>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing or pre-increment 
addressing with an immediate offset, or a 
positive register offset with no shift or shift 
LSL #1, 2 or 3, then 1-issue cycle

LDR <Rt>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>], #<imm> <Rn>

LDR <Rt>, [<Rn>], +/-<Rm> <Rn>, <Rm>

LDR <Rt>, [<Rn>], +/-<Rm> <shift> <cns> <Rn>, <Rm>

<addr_md_3cycle>

LDR <Rt>, [<Rn>, -<Rm>] (!) <Rn>,<Rm> If pre-increment addressing with a negative 
register offset or shift other than LSL #1, 2 or 
3, then 3-issue cyclesLDR <Rt>, <Rn>, +/-<Rm> <shift> <cns>] (!) <Rn>,<Rm>
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-18
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.12 Load and Store Double instructions
This section describes the cycle timing behavior for the LDRD and STRD instructions.

The LDRD and STRD instructions:

• Are normally single-cycle issue. Both the base and any offset register are Very Early Regs.

• Are 3-cycle issue if offset or pre-increment addressing with a negative register offset is 
used. Both the base and any offset register are Very Early Regs.

• Take only one memory cycle if the address is doubleword aligned.

• Take two memory cycles if the address is not doubleword aligned.

Table B-15 shows the cycle timing behavior for LDRD and STRD instructions.

Table B-16 shows the explanation of <addr_md_1cycle> and <addr_md_3cycle> used in 
Table B-15.

Table B-15 Load and Store Double instructions cycle timing behavior

Example instruction Cycles Cycles with 
base writeback

Memory 
cycles

Result latency 
(LDRD)

Result latency 
(base register)

Address is doubleword aligned 

LDRD R0, R1, <addr_md_1cycle>a 1 2 1 2, 2 2

LDRD R0, R1, <addr_md_3cycle>a 3 4 1 4, 4 4

Address not doubleword aligned 

LDRD R0, R1, <addr_md_1cycle>a 2 2 2 2, 3 2

LDRD R0, R1, <addr_md_3cycle>a 4 4 2 4, 5 4

a. See Table B-16 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>.

Table B-16 <addr_md_1cycle> and <addr_md_3cycle> LDRD example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_1cycle>

LDRD <Rt>, <Rt2>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing, pre-increment 
addressing with an immediate offset or a positive 
register offset, then 1-issue cycleLDRD <Rt>, <Rt2>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDRD <Rt>, <Rt2>, [<Rn>], #<imm> <Rn>

LDRD <Rt>, <Rt2>, [<Rn>], +/-<Rm> <Rn>, <Rm>

<addr_md_3cycle>

LDRD <Rt>, <Rt2>, [<Rn>, -<Rm>] (!) <Rn>,<Rm> If pre-increment addressing with a negative 
register offset, then 3-issue cycles
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-19
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.13 Load and Store Multiple instructions
This section describes the cycle timing behavior for the LDM, STM, PUSH, and POP instructions. 
These instructions take multiple cycles to issue, and then use multiple memory cycles to load 
and store all the registers. Because the memory datapath is 64-bits wide, two registers can be 
loaded or stored on each cycle.

This section describes:
• Load and Store Multiples, other than load multiples including the PC
• Load Multiples, where the PC is in the register list on page B-21
• Example Interlocks on page B-21

B.13.1 Load and Store Multiples, other than load multiples including the PC

In all cases the base register, <Rn>, is a Very Early Reg.

Table B-17 shows the cycle timing behavior of load and store multiples including the PC.

Note
 The Cycle timing behavior that Table B-17 shows also covers PUSH and POP instructions that 
behave like store and load multiple instructions with base register write-back.

Table B-17 Cycle timing behavior of Load and Store Multiples, other than load multiples including the PC

Example instruction Cycles
Cycles with 
base register 
write-back

Memory 
cycles

Result latency 
(LDM)

Result latency 
(base register)

First address 64-bit aligned 

LDMIA <Rn>,{R1} 1 1 1 2 1

LDMIA <Rn>,{R1,R2} 1 2 1 2,2 2

LDMIA <Rn>,{R1,R2,R3} 2 2 2 2,2,3 2

LDMIA <Rn>,{R1,R2,R3,R4} 2 3 2 2,2,3,3 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 3 3 2,2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 3 4 3 2,2,3,3,4,4 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6,R7} 4 4 4 2,2,3,3,4,4,5 4

First address not 64-bit aligned

LDMIA <Rn>,{R1} 1 2 1 2 2

LDMIA <Rn>,{R1,R2} 2 2 2 2,3 2

LDMIA <Rn>,{R1,R2,R3} 2 3 2 2,3,3 3

LDMIA <Rn>,{R1,R2,R3,R4} 3 3 3 2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 4 3 2,3,3,4,4 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 4 4 4 2,3,3,4,4,5 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6,R7} 4 5 4 2,3,3,4,4,5,5 5
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-20
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.13.2 Load Multiples, where the PC is in the register list

The processor includes a 4-entry return stack that can predict procedure returns. Any LDM to the 
PC that does not restore the SPSR to the CPSR, is predicted as a procedure return.

In all cases the base register, <Rn>, is a Very Early Reg.

Table B-18 shows the cycle timing behavior of Load Multiples, where the PC is in the register 
list.

Note
 The Cycle timing behavior that Table B-18 shows also covers PUSH and POP instructions that 
behave like store and load multiple instructions with base register writeback.

B.13.3 Example Interlocks

The following sequence that has an LDM instruction takes six cycles to execute, because R7 has a 
result latency of five cycles:

LDMIA R0, {R1-R7}
ADD R10, R10, R7

The following sequence that has an STM instruction takes five cycles to execute:

STMIA R0, {R1-R7}
ADD R7, R10, R11

The following sequence has a result latency hidden by issue cycles. It takes five cycles to 
execute.

LDMIA R0, {R1-R7}
ADD R10, R10, R3

The following sequence that has a POP instruction takes seven cycles to execute, because R9 
has a result latency of six cycles:

POP {R1-R9}
ADD R10, R10, R9

The following sequence that has a PUSH instruction takes five cycles to execute:

PUSH {R1-R7}
ADD R10,R10,R7

Table B-18 Cycle timing behavior of Load Multiples, with PC in the register list (64-bit aligned)

Example instruction Cycles Memory 
cycles

Result 
latency Comments

LDMIA <Rn>,{...,pc} ma nb 2,… Correct return stack prediction

LDMIA <Rn>,{...,pc} ma + 8 nb 2,… Incorrect return stack prediction

LDMIA <cond> <Rn>,{...,pc} ma nb 2,… Correct condition prediction and correct return stack prediction

LDMIA <cond> <Rn>,{...,pc} ma + 7 nb 2,… Incorrect condition prediction

LDMIA <cond> <Rn>,{...,pc} ma + 8 nb 2,… Correct condition prediction and incorrect return stack prediction

a. Where m is the number of cycles for this instruction if the PC were treated as a normal register.
b. Where n is the number of memory cycles for this instruction if the PC were treated as a normal register.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-21
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
Note
 In the examples, R0 and sp are 64-bit aligned addresses. The instructions PUSH and POP always 
use the sp register for the base address.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-22
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.14 RFE and SRS instructions
This section describes the cycle timing for the RFE and SRS instructions.

These instructions:

• return from an exception and save exception return state respectively

• take one or two memory cycles depending on doubleword alignment first address 
location.

In all cases the base register is a Very Early Reg.

Table B-19 shows the cycle timing behavior for RFE and SRS instructions.

Table B-19 RFE and SRS instructions cycle timing behavior

Example instruction Cycles Memory cycles

Address doubleword aligned 

RFEIA <Rn> 10 1

SRSIA #<mode> 1 1

Address not doubleword aligned

RFEIA <Rn> 11 2

SRSIA #<mode> 2 2
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-23
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.15 Synchronization instructions
This section describes the cycle timing behavior for the CLREX, DMB, DSB, ISB, LDREX, LDREXB, 
LDREXD, LDREXH, STREX, STREXB, STREXD, STREXH, SWP, and SWPB instructions

In all cases the base register, Rn, is a Very Early Reg. Table B-20 shows the synchronization 
instructions cycle timing behavior.

The synchronization instructions DMB, DSB, and ISB stall the pipeline for a variable number of 
cycles, depending on the current state of the memory system.

Table B-20 Synchronization instructions cycle timing behavior

Instruction Cycles Memory cycles Result latency

CLREX 1 - -

LDREX <Rt>, <Rn> 1 1 2

LDREXB <Rt>, <Rn> 1 1 2

LDREXH <Rt>, <Rn> 1 1 2

LDREXD <Rt>, <Rn>a

a. Address must be 64-bit aligned.

1 1 2

STREX <Rd>, <Rt>, <Rn> 1 1 2

STREXB <Rd>, <Rt>, <Rn> 1 1 2

STREXH <Rd>, <Rt>, <Rn> 1 1 2

STREXD <Rd>, <Rt>, <Rt2>, <Rn>a 1 1 2

SWP <Rt>, <Rt2>, <Rn> 2 2 3

SWPB <Rt>, <Rt2>, <Rn> 2 2 3
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-24
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.16 Coprocessor instructions
This section describes the cycle timing behavior for the MCR and MRC instructions to CP14, the 
debug coprocessor or CP15, the system control coprocessor.

The precise timing of coprocessor instructions is tightly linked with the behavior of the relevant 
coprocessor. Table B-21 shows the coprocessor instructions cycle timing behavior. Table B-21 
shows the best case numbers.

Note
 Some instructions such as cache operations take more cycles.

Table B-21 Coprocessor instructions cycle timing behavior

Instruction Cycles Result latency Comments

MCR 6 - -

MCR<cond> 6 - Condition code passes

4 - Condition code fails

MRC 6 6 -

MRC<cond> 6 6 Condition code passes

4 4 Condition code fails
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-25
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions
This section describes the cycle timing behavior for SVC, Undefined Instruction, BKPT and 
Prefetch Abort.

In all cases the exception is taken in the Wr stage of the pipeline. SVC and most Undefined 
Instructions that fail their condition codes take one cycle. A small number of Undefined 
Instructions that fail their condition codes take two cycles. Table B-22 shows the SVC, BKPT, 
Undefined, prefetch aborted instructions cycle timing behavior.

Table B-22 SVC, BKPT, Undefined, prefetch aborted instructions cycle timing behavior

Instruction Cycles

SVC (formerly SWI) 9

BKPT 9

Prefetch Abort 9

Undefined Instruction 9
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-26
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.18 Miscellaneous instructions
Table B-23 shows the cycle timing behavior for If-Then (IT) and No OPeration (NOP) 
instructions.

The DBG, PLI, and YIELD instructions are all treated the same as NOP, and so have the same cycle 
timing behavior.

The WFI and WFE instructions stall the pipeline for a variable number of cycles, depending on the 
current state of the memory system.

Table B-23 IT and NOP instructions cycle timing behavior

Example instructions Cycles Early Reg Late Reg Result latency Comments

IT{<v>{<w>{<z>}}} <cond> 1 - - - -

NOP 1 - - - -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-27
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.19 Floating-point register transfer instructions
This section describes the cycle timing behavior for the various VFP instruction that transfer 
data between the VFP register file and the integer register file, including the system registers.

All source operands are Normal Regs, and the result latency for non-system register transfers is 
always 1 cycle.

Instructions that write data from the integer register file to the VFP system registers (VMSR) are 
blocking, that is, no subsequent instruction can start execution before the VMSR has completed 
execution. Consequently, the VMSR instructions take six cycles to execute.

All transfers to and from the VFP system registers are also serializing. This means that if there 
are any outstanding out-of-order-completion VFP instructions, the system register transfer 
instruction stalls in the iss-stage until these instructions are complete.

VFP instructions that complete out-of-order are VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32, 
VDIV.F32, VSQRT.F32, VCVT.F64.F32, and double-precision arithmetic and conversion instructions.

Table B-24 shows the floating-point register transfer instructions cycle timing behavior.

Table B-24 Floating-point register transfer instructions cycle timing behavior

Example instruction Cycles Result latency Comments

VMOV <Sn>, <Rt> 1 1 -

VMOV <Rt>, <Sn> 1 2 -

VMOV <Dn[x]>, <Rt> 1 1 -

VMOV.<32> <Rt>, <Dn[x]> 1 2 -

VMOV <Sm>, <Sm1>, <Rt>, <Rt2> 1 1 -

VMOV <Rt>, <Rt2>, <Sm>, <Sm1> 1 2 -

VMOV <Dm>, <Rt>, <Rt2> 1 1 -

VMOV <Rt>, <Rt2>, <Dm> 1 2 -

VMSR <spec_reg>, <Rt> 6 - Blocking and serializing

VMRS <Rt>, <spec_reg> 1 2 Serializing

VMRS APSR_nzcv, FPSCR 1 - Serializing
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-28
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.20 Floating-point load/store instructions
This section describes the cycle timing behavior for all load and store instructions that operate 
on the VFP register file:

• The base address register, and any offset register are Very Early Regs for both loads and 
stores.

• For store instructions, the data register (Sd or Dd), or registers are always Late Regs.

• The cycle timing of load and store instructions is affected by the starting address for the 
transfer.

Note
 The starting address is not always the same as the base address.

• The cycle timing of load and store multiple instructions is also affected by whether or not 
the base address register is updated by the instruction, that is, base register writeback.

Table B-25 shows the number of cycles and result latencies for single load and store instructions 
and load multiple instructions. Values are shown for each instruction with and without base 
register writeback, and with different starting address alignments. Cycle counts and base 
register result latencies for store multiple instructions are the same as for the equivalent load 
multiple instruction.

Table B-25 Floating-point load/store instructions cycle timing behavior

Example instruction
Cycles/ 
memory 
cycles

Cycles with 
writeback (!)

Result 
latency 
(load)

Result latency 
(base register, 
<Rn>)

Comments

VLDR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - 1 - -

VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - 1 - 64-bit aligned address

VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - 2 - Not aligned

VSTR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - - - -

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - - - 64-bit aligned address

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - - - Not aligned

First address 64-bit aligned

VLDM{mode}.32 <Rn>{!}, {s1} 1 1 1 1 -

VLDM{mode}.32 <Rn>{!}, {s1,s2} 1 2 1,1 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s3} 2 2 1,1,2 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s4} 2 3 1,1,2,2 3 -

VLDM{mode}.64 <Rn>{!}, {d1} 1 2 1 2 -

VLDM{mode}.64 <Rn>{!}, {d1,d2} 2 3 1,2 3 -

VLDM{mode}.64 <Rn>{!}, {d1-d3} 3 4 1,2,3 4 -

VLDM{mode}.64 <Rn>{!}, {d1-d4} 4 5 1,2,3,4 5 -

First address not 64-bit aligned

VLDM{mode}.32 <Rn>{!}, {s1} 1 1 1 1 -
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-29
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
VLDM{mode}.32 <Rn>{!}, {s1,s2} 2 2 1,2 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s3} 2 3 1,2,2 3 -

VLDM{mode}.32 <Rn>{!}, {s1-s4} 3 3 1,2,2,3 3 -

VLDM{mode}.64 <Rn>{!}, {d1} 2 2 2 2 -

VLDM{mode}.64 <Rn>{!}, {d1,d2} 3 3 2,3 3 -

VLDM{mode}.64 <Rn>{!}, {d1-d3} 4 4 2,3,4 4 -

VLDM{mode}.64 <Rn>{!}, {d1-d4} 5 5 2,3,4,5 5 -

Table B-25 Floating-point load/store instructions cycle timing behavior (continued)

Example instruction
Cycles/ 
memory 
cycles

Cycles with 
writeback (!)

Result 
latency 
(load)

Result latency 
(base register, 
<Rn>)

Comments
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-30
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.21 Floating-point single-precision data processing instructions
This section describes the cycle timing behavior for all single-precision VFP CDP instructions. 
This includes arithmetic instructions such as VMUL.F32, data and immediate moving instructions 
such as ”VMOV.F32 <Sd>, #<imm>”, VABS.F32, VNEG.F32, and ”VMOV <Sd>, <Sm>”, and comparison 
instructions and conversion instructions.

Table B-26 shows the floating-point single-precision data processing instructions cycle timing 
behavior.

Table B-26 Floating-point single-precision data processing instructions cycle timing
behavior

Example instruction Cycles Early Reg Result latency

VMLA.F32 <Sd>, <Sn>, <Sm>a

a. Also VMLS.F32, VNMLS.F32, and VNMLA.F32.

1b

b. VMLA.F32 completes out-of-order, and can take an extra cycle (two in total) if an add 
instruction (VADD) or certain dual-issued instruction pairs are in the iss-stage when the 
instruction completes.

<Sn>, <Sm> 5c

c. Except when the instruction dependent on the result <Sd> is another VMLA.F32 
instruction, and the dependent operand is the accumulate operand, <Sd>. In this case, the 
result latency is reduced to 3 cycles.

VADD.F32 <Sd>, <Sn>, <Sm>d

d. Also VSUB.F32, VMUL.F32, and VNMUL.F32.

1 <Sn>, <Sm> 2

VDIV.F32 <Sd>, <Sn>, <Sm> 2 <Sn>, <Sm> 16

VSQRT.F32 <Sd>, <Sm> 2 <Sm> 16

VMOV.F32 <Sd>, #<imm> 1 - 1

VMOV.F32 <Sd>, <Sm>e

e. Also VABS.F32 and VNEG.F32.

1 - 1

VCMP.F32 <Sd>, <Sm>f

f. Also VCMPE.F32.

1 <Sd>, <Sm> -

VCMP.F32 <Sd>, #0.0f 1 <Sd> -

VCVT.F32.U32 <Sd>, <Sm>g

g. Also VCVT.F32.S32.

1 <Sm> 2

VCVT.F32.U32 <Sd>, <Sd>, #<fbits>h

h. Also VCVT.F32.U16, VCVT.F32.S32, and VCVT.F32.S16.

1 <Sd> 2

VCVTR.U32.F32 <Sd>, <Sm>i

i. Also VCVT.U32.F32, VCVTR.S32.F32, and VCVT.S32.F32.

1 <Sm> 2

VCVT.U32.F32 <Sd>, <Sd>, #<fbits>j

j. Also VCVT.U16.F32, VCVT.S32.F32, and VCVT.S16.F32.

1 <Sd> 2

VCVT.F64.F32 <Dd>, <Sn> 3 <Sm> 5
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-31
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.22 Floating-point double-precision data processing instructions
This section describes the cycle timing behavior for all double-precision VFP CDP instructions. 
This includes arithmetic instructions such as VMUL.F64, data and immediate moving instructions 
such as ”VMOV.F64 <Dd>, #<imm>”, VABS.F64, VNEG.F64, and ”VMOV <Dd>, <Dm>”, and comparison 
instructions and conversion instructions.

Table B-27 shows the floating-point double-precision data processing instructions cycle timing 
behavior

Table B-27 Floating-point double-precision data processing instructions cycle timing
behavior

Example instruction Cycles Early Reg Result latency

VMLA.F64 <Dd>, <Dn>, <Dm>a

a. Also VMLS.F64, VNMLS.F64, and VNMLA.F64.

13 <Dn>, <Dm> 19

VADD.F64 <Dd>, <Dn>, <Dm>b

b. Also VSUB.F64, VMUL.F64, and VNMUL.F64.

3 <Dn>, <Dm> 9

VDIV.F64 <Dd>, <Dn>, <Dm> 3 <Dn>, <Dm> 63

VSQRT.F64 <Dd>, <Dm> 3 <Dm> 63

VMOV.F64 <Dd>, #<imm> 1 - 1

VMOV.F64 <Dd>, <Dm>c

c. Also VABS.F64 and VNEG.F64.

1 - 1

VCMP.F64 <Dd>, <Dm>d

d. Also VCMPE.F64.

2 <Dd>, <Dm> -

VCMP.F64 <Dd>, #0.0d 2 <Dm> -

VCVT.F64.U32 <Dd>, <Sm>e

e. Also VCVT.F64.S32.

3 <Dm> 7

VCVT.F64.U32 <Dd>, <Dd>, #<fbits>f

f. Also VCVT.F64.U16, VCVT.F64.S32, and VCVT.F64.S16.

3 <Dd> 7

VCVTR.U32.F64 <Sd>, <Dm>g

g. Also VCVT.U32.F64, VCVTR.S32.F64, and VCVT.S32.F64.

3 <Dm> 7

VCVT.U32.F64 <Dd>, <Dd>, #<fbits>h

h. Also VCVT.U16.F64, VCVT.S32.F64, and VCVT.S16.F64.

3 <Dd> 7

VCVT.F32.F64 <Sd>, <Dn> 3 <Dm> 7
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-32
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.23 Dual issue
To increase instruction throughput, the processor can issue certain pairs of instructions 
simultaneously. This is called dual issue. When this happens, the instruction with the smaller 
cycle count is assumed to execute in zero cycles. If a pair of instructions can be dual-issued, they 
are always dual-issued unless dual-issuing is disabled, see c1, Auxiliary Control Register on 
page 4-41. If one instruction of the pair is interlocked, both are interlocked. 

This section describes:
• Dual issue rules
• Permitted combinations on page B-34

B.23.1 Dual issue rules

The following rules apply to dual-issue instructions:

• Both instructions must be available to the issue stage at the same time. This is unlikely if 
there are many branches.

• The second instruction must not use the PC as a source register unless it is B #immed.

• The first instruction must not use the PC as a destination register.

• Both instructions must belong to the same instruction set, ARM or Thumb.

• There must be no data dependency between the two instructions. That is, the second 
instruction must not have any source registers that are destination registers of the first 
instruction.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-33
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
B.23.2 Permitted combinations

Table B-28 lists the permitted instruction combinations. Any instruction can be conditional or 
flag-setting unless otherwise stated. Only the exact instruction combinations listed in 
Table B-28 can be dual issued, provided you ensure the instruction combinations obey the rules 
specified in Dual issue rules on page B-33.

Table B-28 Permitted instruction combinations

Dual issue 
case First instruction Second instruction

Case A Any instruction other than load/store multiple/double, flag-setting 
multiply, non-VFP coprocessor operations, miscellaneous 
processor control instructionsa, or floating point instructions if 
floating point logic is not included in the processor

B #immed

IT

NOP

Case A-Fb Any floating point instructions, excluding load/store multiple, 
double-precision CDP instructions, VCVT.F64.F32, and VMRS and 
VMSR.

Case B1 LDR <Rt>, [<Rn>, #<imm>]c

LDR <Rt>, [<Rn>, <Rm>]c

LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3]c

Any data processing instruction that does not 
require a shift by a register value.d

Any bitfield, saturate or bit-packing instruction.e

Any signed or unsigned extend instruction.f

Any SIMD add or subtract instruction.g

Other miscellaneous instructions.h

Case B1-Fb Any single-precision CDPi, excluding "VMOV.F32 
<Sd>, #<imm>", VNEG.F32, VABS.F32, VCVT.F64.F32, 
VDIV.F32, and VSQRT.F32.
32-bit transfers to and from the floating-point 
register filel.

Case B2 STR <Rt>, [<Rn>, #<imm>]c As for Case B1.

Case B2-Fb As for Case B1-F

Case C MOV <Rd>, #immedjk

MOVW <Rd>, #immedj

MOV <Rd>, <Rm>j

Any data processing instruction.d

Any bitfield, saturate or bit-packing instruction.e

Any signed or unsigned extend instruction.f

Any SIMD add or subtract instruction.g

Other miscellaneous instructions.h

Case C-Fb 32-bit transfers to and from the floating-point 
register filel.

Case F1b,m Any single-precision CDPi, excluding “VMOV.S32 <Sd>, #<imm>", 
VCVT.F64.F32, VABS.F32, and VNEG.F32.

As for case C or C-F.

Case F2_ldb VLDR.F32n As for Case B1 or Case B1-F

Case F2_stb VSTR.F32n As for Case B1.
Any single-precision CDPi, excluding 
multiply-accumulate instructionso.
32-bit transfers to and from the floating-point 
register filel.

Case F2Db VLDR.F64n As for Case B1.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-34
ID092411 Non-Confidential



Cycle Timings and Interlock Behavior 
Case F3b 32-bit transfers to and from the floating-point register filel

"VMOV.F32, <Sd>, <Sm>", VABS.F32, and VNEG.F32.
As for Case F2_st.

Case F4b Any instruction that does not set flags, other than load/store 
multiple/double, non-VFP coprocessor operations, multi-cycle 
multiply instructionsp, double-precision floating point CDP 
instructions, VCVT.F64.F32, or a miscellaneous processor control 
instructiona

Any single-precision CDPi, excluding "VMOV.F32 
<Sd>, #<imm>", VNEG.F32, VABS.F32, VCVT.F64.F32, 
VDIV.F32, and VSQRT.F32.
32-bit transfers to and from the floating-point 
register filel.

Case F6b VMRS r15, FPSCR As for Case A.

a. These are processor state updating instructions, synchronization instructions, SVC, BKPT, prefetch abort and Undefined Instructions.
b. This case can only occur if the optional floating-point functionality has been configured for the Cortex-R5F processor, see Configurable 

options on page 1-6.
c. You can substitute LDR with LDRB, LDRH, LDRSB, or LDRSH. You can also substitute STR with STRB or STRH.
d. Data processing instructions are ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP, EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, RSB, SBC, SUB, 

SUBW, TEQ, and TST.
e. Bitfield, saturate, and bit-packing instructions are BFC, BFI, PKHBT, PKHTB, QADD, QDADD, QDSUB, QSUB, SBFX, SSAT, SSAT16, UBFX, USAT, and USAT16.
f. Signed or unsigned extend instructions are SXTAB, SXTAB16, SXTAH, SXTB, SXTB16, SXTH, UXTAB, UXTAB16, UXTAH, UXTB, UXTB16, and UXTH.
g. SIMD add and subtract instructions are QADD16, QADD8, QASX, SQUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, 

SHSAX, SSUB16, SSUB8, SSAX, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX, 
USUB16, USUB8, and USAX.

h. Other miscellaneous instructions are RBIT, REV, REV16, REVSH, and SEL.
i. Single-precision CDPs are VABS.F32, VNEG.F32, "VMOV.F32 <Sd>, #<imm>", VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32, VMUL.F32, VNMUL.F32, 

VADD.F32, VSUB.F32, VDIV.F32, VSQRT.F32, VCMP.F32, VCMPE.F32, VCVT.F64.F32, VCVT.F32.U32, VCVT.F32.S32, VCVT.F32.U16, VCVT.F32.S16, 
VCVTR.U32.F32, VCVT.U32.F32, VCVTR.S32.F32, VCVT.S32.F32, VCVT.U16.F32, and VCVT.S16.F32.

j. Must not be flag-setting.
k. Immediate value must not require a shift.
l. 32-bit transfers to or from the floating point register file include single or half-double floating point register transfers, including "VMOV <Sn>, 

<Rt>", "VMOV.F32 <Dn[x]>, <Rt>", "VMOV.F32 <Rt>, <Dn[x]>", and "VMOV <Rt>, <Sn>", but excluding VMRS and VMSR.
m. When the first instruction is a floating point multiply-accumulate, and the second instruction is a 32-bit transfer to the floating-point register 

file, case F1 can only occur if the two instructions have different destination registers.
n. Any addressing modes.
o. Single-precision floating-point multiply-accumulate instructions are VMLA.F32, VMLS.F32, VNMLS.F32, and VNMLA.F32.
p. Multi-cycle multiply instructions are SMMUL, SMMLA, SMMLS, MUL, MLA, MLS, SMULL, SMLAL, UMAAL, UMULL, and UMLAL.

Table B-28 Permitted instruction combinations (continued)

Dual issue 
case First instruction Second instruction
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. B-35
ID092411 Non-Confidential



Appendix C 
ECC Schemes

This appendix describes some of the advantages and disadvantages of the different Error 
Checking and Correction (ECC) schemes for the TCMs. It contains the following section:
• ECC scheme selection guidelines on page C-2.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. C-1
ID092411 Non-Confidential



ECC Schemes 
C.1 ECC scheme selection guidelines
When deciding to implement a Cortex-R5 processor with an ECC scheme on one or both of the 
TCM interfaces, give careful consideration between using 32-bit or 64-bit ECC. To calculate or 
check the ECC code for data, the processor must know the value of all bytes in the data chunk 
protected by the scheme. Therefore, when using these schemes, the processor must perform 
additional read accesses to calculate and check the ECC code stored with the data.

For example, if the ATCM is implemented with 32-bit ECC and a program performs an aligned 
STR to the memory, the processor can calculate the error correction code using only the data 
stored by the program.

If the same memory was implemented with 64-bit ECC, the processor cannot calculate the ECC 
code for the doubleword memory chunk being written using only the data stored by the program. 
To calculate the ECC code and store the data, the processor must first perform a read of the other 
word in that memory chunk. This increases the number of memory accesses required to execute 
the program. This increases power consumption, and can also lead to a decrease in performance.

Use the following guidelines to decide which scheme to use. If you are in any doubt, benchmark 
your system running typical software to find the best balance between area, power, and 
performance for your application.

• For a TCM interface that contains mainly instructions, use 64-bit ECC. The vast majority 
of reads requested by the prefetch unit are doubleword.

• Use 64-bit ECC when a TCM contains data that is accessed using:
— LDRD or STRD instructions where the start address is doubleword aligned
— LDM or STM instructions where the start address is doubleword aligned and there are 

an even number of registers in the register list.
64-bit ECC requires less RAM area, and does not provide any performance loss or 
increased power consumption over 32-bit ECC in these cases.

• When LDM and STM instructions are used to access many registers, the majority of TCM 
accesses do not require additional reads with 64-bit ECC.

• 32-bit ECC provides better power consumption and generally better performance 
compared to 64-bit ECC when:
— a program performs many unaligned accesses to data in a TCM
— a program performs many byte, halfword, and word accesses to data in a TCM.

You might be able to obtain optimal results by using a different error detection scheme on each 
TCM interface, and allocating instructions and data to each interface based on the guidelines 
given in this section.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. C-2
ID092411 Non-Confidential



Appendix D 
Memory Ordering

This appendix describes the processor memory ordering. It contains the following sections:
• Memory ordering on page D-2
• Virtual AXI peripheral interface on page D-3.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. D-1
ID092411 Non-Confidential



Memory Ordering 
D.1 Memory ordering
The ARM architecture requires that transactions to locations in Device-type memory be 
ordered. The Cortex-R5 processor has an in-order pipeline, so any non-cached read blocks, 
preventing any subsequent read or write from starting until the current read is complete. On an 
AXI bus, as used by the Cortex-R5 processor, a series of writes issued in order, is kept in order 
by using the same ID for all the transactions.

To maintain ordering between a write and a subsequent read, the Cortex-R5 processor waits for 
the write transaction to complete before starting the read. The writes that the Cortex-R5 
processor must wait for are any Device-type writes in its write buffer or bus interface and writes 
for which the address and data have been accepted by the bus but for which no response has been 
received, that is AXI outstanding writes. The latency of the Device read depends on how many 
writes must complete before it starts.

The architectural ordering requirements apply only to individual peripherals so, for example, an 
outstanding write to a UART does not have to be completed before a read from an interrupt 
controller can be started. However, the Cortex-R5 processor views the memory attached the 
each interface as flat, so ordering is preserved for all accesses to a given interface. Accesses to 
different Cortex-R5 interfaces are not ordered, so selecting which interface is used can improve 
the latency of critical Device read accesses. 

For example, if a CPU has a number of write transactions outstanding on the AXI master 
interface, a read from an interrupt controller attached to the AXI master interface must wait for 
those writes to complete and the latency incurred might impact the interrupt handling 
performance. Alternatively, if the interrupt controller were attached to the AXI peripheral 
interface, the read could start without waiting for the outstanding writes on the AXI master 
interface. However, the read would have to wait for any outstanding writes on the AXI 
peripheral interface or its buffers.

Note
 • The transaction ordering provided by Device memory is useful in situations where the 

access has side effects. For example, if the processor writes to a memory-mapped FIFO, 
and then reads a different memory-mapped register that indicates whether the FIFO is full, 
the value read must reflect the state of the FIFO after the write otherwise an additional 
write could be performed, that causes an overflow.

• If a write to a peripheral on one interface causes a side effect on a peripheral on a different 
interface, there is no implicit ordering to ensure the side effect is observed by a subsequent 
access to the second peripheral, even if both are in Device-type memory. In this situation, 
you must perform a read from the first peripheral to ensure that the write has completed, 
followed by a DMB to ensure ordering before performing the second access. On the 
Cortex-R5 processor, a DMB alone is sufficient to force this ordering, but this is not 
architectural and cannot be relied on in the general case.

Writes to Device-type memory always drain from the Cortex-R5 buffers as quickly as possible. 
If the memory system attached to a port is perfect, that is the write response is returned in the 
cycle after the address and data have been received, outstanding accesses cannot accumulate. 
Selecting different interfaces for different peripherals does not improve read latencies in such a 
system.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. D-2
ID092411 Non-Confidential



Memory Ordering 
D.2 Virtual AXI peripheral interface
Each Cortex-R5 CPU can perform memory transactions using the AXI master interface, the 
AXI peripheral interface or, if included, the AHB peripheral interface. Each of these interfaces 
is treated independently from an ordering point of view. The virtual AXI peripheral interface 
provides an additional interface that, although it shares the same physical port as the AXI 
peripheral interface, is treated independently from an ordering point of view.

The two AXI peripheral interfaces use different AXI IDs to enable the memory system to return 
responses out of order. They also have different limits on the number of outstanding writes 
permitted so, by selecting a particular interface for a peripheral, you can have some control over 
the maximum latency of accesses to that peripheral. If your AXI peripheral port memory system 
accepts outstanding write transactions, ARM recommends that you configure the peripheral 
interfaces so that the most latency critical peripheral, possibly an interrupt controller, is on the 
virtual AXI peripheral interface and all others elsewhere.

Note
 • The AXI peripheral interface and virtual AXI peripheral interface share write buffer logic, 

and write data is drained in order from this buffer. The interfaces use different IDs, so 
write responses can be received out-of-order. If the buffer contains writes to both 
interfaces, and the AXI peripheral interface writes are older, a virtual AXI peripheral 
interface read cannot start until the virtual AXI peripheral interface writes have all 
completed, and this in turn requires that the AXI peripheral interface writes have posted 
address and data to the bus though not necessarily completed.

• Similarly, if the memory system on the AXI peripheral port returns all write responses in 
order, regardless of ID, this can force reads on one interface to wait for writes on a 
different interface. The same effect is possible if two CPU ports connect to a common 
memory bus that forces ordering.
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. D-3
ID092411 Non-Confidential



Appendix E 
Revisions

This appendix describes the technical changes between released issues of this book.

Table E-1 Issue A

Change Location Affects

First release - -

Table E-2 Differences between issue A and issue B

Change Location Affects

Add ID values for r1p0 Table 1-3 on page 1-16 r1p0

Updated AMBA interface clock gating Clock gating on page 2-16 r1p0

System control register enables SWP and SWPB to be 
Undefined

Table 4-24 on page 4-39 r1p0

Single-precision only option for Cortex-R5F Features on page 1-4
Table 1-1 on page 1-6
Figure 4-45 on page 4-69
Table 4-58 on page 4-80
About the FPU programmers model on page 11-2
Media and VFP Feature Registers, MVFR0 and MVFR1 
on page 11-9

r1p0

Accessibility of Slave Port Control Register page 4-66 All revisions
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. E-1
ID092411 Non-Confidential



Revisions 
Additional description for c15, Build Options 1 Register c15, Build Options 1 Register on page 4-79 All revisions

Update AXI slave address decode information AXI slave interface for cache RAMs on page 9-21 All revisions

Update AXI slave characteristics AXI slave characteristics on page 9-23 All revisions

Changed RAM access using AXI slave interface Accessing RAMs using the AXI slave interface on 
page 9-25

r1p0

Register name corrections STRH on page 9-42
DTR access mode on page 12-17

All revisions

MVFR1.LS change of usage Table 11-8 on page 11-11 r1p0

Table E-2 Differences between issue A and issue B (continued)

Change Location Affects

Table E-3 Differences between issue B and issue C

Change Location Affects

Update revision information Table 1-3 on page 1-16 r1p1
 

Table 4-7 on page 4-18

Table 4-15 on page 4-28

Table 4-17 on page 4-31

AXI master interface transfers on page 9-8

Correct RVPTYSm signal name Table A-8 on page A-14 All revisions

Add BVPTYCS signal description Table A-10 on page A-16 All revisions

Add ARCTLPTYS[3:0] signal description Table A-8 on page A-14 All revisions

Update RAM-Access space reference Cache RAM access on page 9-27 All revisions

Update validation register short names Validation Registers on page 4-68 All revisions

Update descriptions of product revisions Table 4-3 on page 4-15 All revisions

Table 12-6 on page 12-11

Table 12-31 on page 12-38

Table 11-4 on page 11-6

Update register descriptions Throughout manual All revisions

Table E-4 Differences between issue C and issue D

Change Location Affects

Update description of clock gating Clock gating on page 2-16 All revisions

Update inner cache policy encoding behavior for 
write-back, no write-allocate

Table 4-36 on page 4-57 All revisions

Table 4-37 on page 4-58

Region attributes on page 7-8

Update description of stall cycle caused by integer divide Table 6-1 on page 6-2 All revisions
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. E-2
ID092411 Non-Confidential



Revisions 
Add description of overlapping memory About the L2 interface on page 9-2 All revisions

Update revision information Table 12-31 on page 12-38 r1p2 

Update latency values for VDIV.F64 and VSQRT.F64 Table B-27 on page B-32 All revisions

Table E-4 Differences between issue C and issue D (continued)

Change Location Affects
ARM DDI 0460D Copyright © 2010-2011 ARM. All rights reserved. E-3
ID092411 Non-Confidential


	Cortex-R5 Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content


	1: Introduction
	1.1 About the processor
	1.2 Compliance
	1.2.1 ARM architecture
	1.2.2 Trace macrocell
	1.2.3 Advanced Microcontroller Bus Architecture
	1.2.4 Debug architecture

	1.3 Features
	1.4 Interfaces
	1.5 Configurable options
	1.5.1 CPU configurations

	1.6 Test features
	1.7 Product documentation, design flow, and architecture
	1.7.1 Documentation
	1.7.2 Design flow

	1.8 Changes from previous version

	2: Functional Description
	2.1 About the functions
	2.1.1 Data Processing Unit
	2.1.2 Load/Store Unit
	2.1.3 PreFetch Unit
	2.1.4 L1 memory system
	2.1.5 L2 AXI interfaces
	2.1.6 Dual-redundant core
	2.1.7 Split/lock
	2.1.8 Hard error features
	2.1.9 Debug
	2.1.10 System control coprocessor
	2.1.11 Interrupt handling
	2.1.12 Power management

	2.2 Interfaces
	2.2.1 AXI master interface
	2.2.2 Peripheral interfaces
	2.2.3 AXI slave interface
	2.2.4 TCM interfaces
	2.2.5 ACP interface
	2.2.6 Interrupt and VIC interface
	2.2.7 Configuration interface
	2.2.8 Interrupt and event outputs
	2.2.9 APB Debug interface
	2.2.10 ETM interface
	2.2.11 Test interface

	2.3 Clocking and resets
	2.3.1 Resets
	2.3.2 Reset modes
	2.3.3 Clocking

	2.4 Operation
	2.4.1 Initialization


	3: Programmers Model
	3.1 About the programmers model
	3.2 Modes of operation and execution
	3.2.1 Instruction set states
	3.2.2 Modes of operation

	3.3 Memory model
	3.3.1 Byte-invariant big-endian format
	3.3.2 Little-endian format

	3.4 Coherency
	3.5 Data structures
	3.6 Registers
	3.6.1 The register set

	3.7 Program status registers
	3.7.1 The N, Z, C, and V bits
	3.7.2 The Q bit
	3.7.3 The IT bits
	3.7.4 The J bit
	3.7.5 The DNM bits
	3.7.6 The GE bits
	3.7.7 The E bit
	3.7.8 The A bit
	3.7.9 The I and F bits
	3.7.10 The T bit
	3.7.11 The M bits
	3.7.12 Modification of PSR bits by MSR instructions

	3.8 Exceptions
	3.8.1 Exception entry and exit summary
	3.8.2 Reset
	3.8.3 Interrupts
	3.8.4 Aborts
	3.8.5 Supervisor call instruction
	3.8.6 Undefined Instruction
	3.8.7 Breakpoint instruction
	3.8.8 Exception vectors 

	3.9 Acceleration of execution environments
	3.10 Unaligned and mixed-endian data access support
	3.11 Big-endian instruction support

	4: System Control 
	4.1 About system control
	4.1.1 System control and configuration
	4.1.2 MPU control and configuration
	4.1.3 Cache control and configuration
	4.1.4 Interface control and configuration
	4.1.5 System performance monitor
	4.1.6 System validation

	4.2 Register summary
	4.3 Register descriptions
	4.3.1 Register allocation
	4.3.2 c0, Main ID Register
	4.3.3 c0, Cache Type Register
	4.3.4 c0, TCM Type Register
	4.3.5 c0, MPU Type Register
	4.3.6 c0, Multiprocessor Affinity Register
	4.3.7 The Processor Feature Registers
	4.3.8 c0, Debug Feature Register 0
	4.3.9 c0, Auxiliary Feature Register 0
	4.3.10 Memory Model Feature Registers
	4.3.11 Instruction Set Attributes Registers
	4.3.12 c0, Cache Size ID Register
	4.3.13 c0, Cache Level ID Register
	4.3.14 c0, Auxiliary ID Register 
	4.3.15 c0, Cache Size Selection Register
	4.3.16 c1, System Control Register
	4.3.17 c1, Auxiliary Control Register
	4.3.18 c15, Secondary Auxiliary Control Register
	4.3.19 c1, Coprocessor Access Control Register
	4.3.20 Fault Status and Address Registers
	4.3.21 c6, MPU memory region programming registers
	4.3.22 Cache operations
	4.3.23 c9, BTCM Region Register
	4.3.24 c9, ATCM Region Register
	4.3.25 c9, TCM Selection Register
	4.3.26 c11, Slave Port Control Register
	4.3.27 c13, FCSE PID Register
	4.3.28 c13, Context ID Register
	4.3.29 c13, Thread and Process ID Registers
	4.3.30 Validation Registers
	4.3.31 Correctable Fault Location Register
	4.3.32 Build Options Registers
	4.3.33 Pin Options Register
	4.3.34 Peripheral interface region registers


	5: Prefetch Unit
	5.1 About the prefetch unit
	5.2 Branch prediction
	5.2.1 Branch predictor
	5.2.2 Incorrect predictions and correction

	5.3 Return stack
	5.4 Controlling instruction prefetch and program flow prediction

	6: Events and Performance Monitor
	6.1 About the events
	6.2 About the PMU
	6.3 Performance monitoring registers
	6.3.1 c9, Performance Monitor Control Register
	6.3.2 c9, Count Enable Set Register
	6.3.3 c9, Count Enable Clear Register
	6.3.4 c9, Overflow Flag Status Register
	6.3.5 c9, Software Increment Register
	6.3.6 c9, Performance Counter Selection Register
	6.3.7 c9, Cycle Count Register
	6.3.8 c9, Event Type Selection Register
	6.3.9 c9, Event Count Registers
	6.3.10 c9, User Enable Register
	6.3.11 c9, Interrupt Enable Set Register
	6.3.12 c9, Interrupt Enable Clear Register

	6.4 Event bus interface
	6.4.1 Use of the event bus and counters


	7: Memory Protection Unit
	7.1 About the MPU
	7.1.1 Memory regions
	7.1.2 Overlapping regions
	7.1.3 Background regions
	7.1.4 TCM regions
	7.1.5 Peripheral port regions

	7.2 Memory types
	7.2.1 Using memory types

	7.3 Region attributes
	7.4 MPU interaction with memory system
	7.5 MPU faults
	7.5.1 Background fault
	7.5.2 Permission fault
	7.5.3 Alignment fault

	7.6 MPU software-accessible registers

	8: Level One Memory System
	8.1 About the L1 memory system
	8.2 About the error detection and correction schemes
	8.2.1 Parity
	8.2.2 Error checking and correction
	8.2.3 Read-Modify-Write
	8.2.4 Hard errors
	8.2.5 Error correction

	8.3 Fault handling
	8.3.1 Faults
	8.3.2 Fault status information
	8.3.3 Correctable Fault Location Register
	8.3.4 Usage models

	8.4 About the TCMs
	8.4.1 TCM attributes and permissions
	8.4.2 ATCM and BTCM configuration
	8.4.3 TCM internal error detection and correction
	8.4.4 TCM arbitration
	8.4.5 TCM initialization
	8.4.6 TCM port protocol
	8.4.7 External TCM errors
	8.4.8 AXI slave interfaces for TCMs

	8.5 About the caches
	8.5.1 Store buffer
	8.5.2 Cache maintenance operations
	8.5.3 Cache error detection and correction
	8.5.4 Cache RAM organization
	8.5.5 Cache interaction with memory system

	8.6 Internal exclusive monitor
	8.7 Memory types and L1 memory system behavior
	8.8 Error detection events
	8.8.1 TCM error events
	8.8.2 Instruction-cache error events
	8.8.3 Data-cache error events
	8.8.4 Events and the CFLR


	9: Level Two Interface
	9.1 About the L2 interface
	9.1.1 Bus ECC

	9.2 AXI master interface
	9.2.1 Identifiers for AXI bus accesses
	9.2.2 Write response
	9.2.3 Linefill buffers and the AXI master interface
	9.2.4 Eviction buffer
	9.2.5 AXI extensions
	9.2.6 Memory system implications for AXI accesses

	9.3 AXI master interface transfers
	9.3.1 Restrictions on AXI transfers
	9.3.2 Strongly Ordered and Device transactions
	9.3.3 Linefills
	9.3.4 Cache line write-back (eviction)
	9.3.5 Non-cacheable reads
	9.3.6 Non-cacheable or write-through writes
	9.3.7 AXI transaction splitting
	9.3.8 Normal write merging

	9.4 AXI slave interface
	9.4.1 AXI slave interface for cache RAMs
	9.4.2 TCM ECC support
	9.4.3 External TCM errors
	9.4.4 Cache parity and ECC support
	9.4.5 AXI slave control
	9.4.6 AXI slave characteristics

	9.5 Enabling or disabling AXI slave accesses
	9.6 Accessing RAMs using the AXI slave interface
	9.6.1 TCM RAM access
	9.6.2 Cache RAM access

	9.7 Peripheral interfaces
	9.7.1 Peripheral interface configuration
	9.7.2 Peripheral interface initialization
	9.7.3 Peripheral interface attributes and permissions
	9.7.4 Identifiers for AXI peripheral port accesses
	9.7.5 Write response
	9.7.6 Memory attributes
	9.7.7 AXI peripheral port transfers
	9.7.8 AHB peripheral port transfers
	9.7.9 Semaphores

	9.8 Accelerator Coherency Port interface

	10: Power Control
	10.1 About power control
	10.2 Power management
	10.2.1 Run mode
	10.2.2 Standby mode
	10.2.3 Dormant mode
	10.2.4 Shutdown mode
	10.2.5 Power Management Controller
	10.2.6 Power mode interaction with ACP
	10.2.7 Power mode interaction with debug


	11: FPU Programmers Model
	11.1 About the FPU programmers model
	11.1.1 FPU functionality
	11.1.2 About the VFPv3-D16 architecture
	11.1.3 VFP instructions in a single-precision configuration

	11.2 General-purpose registers
	11.2.1 FPU views of the register bank

	11.3 System registers
	11.3.1 Floating-Point System ID Register
	11.3.2 Floating-Point Status and Control Register
	11.3.3 Floating-Point Exception Register, FPEXC
	11.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

	11.4 Modes of operation
	11.4.1 Full-compliance mode
	11.4.2 Flush-to-zero mode
	11.4.3 Default NaN mode

	11.5 Compliance with the IEEE 754 standard
	11.5.1 Complete implementation of the IEEE 754 standard
	11.5.2 IEEE 754 standard implementation choices
	11.5.3 Exceptions


	12: Debug
	12.1 Debug systems
	12.1.1 Debug host
	12.1.2 Protocol converter
	12.1.3 Debug target

	12.2 About the debug unit
	12.2.1 Halting debug-mode debugging
	12.2.2 Monitor debug-mode debugging
	12.2.3 Programming the debug unit

	12.3 Debug register interface
	12.3.1 Coprocessor registers
	12.3.2 CP14 access permissions
	12.3.3 Coprocessor registers summary
	12.3.4 Memory-mapped registers
	12.3.5 Memory addresses for breakpoints and watchpoints
	12.3.6 Power domains
	12.3.7 Effects of resets on debug registers
	12.3.8 APB port access permissions

	12.4 Debug register descriptions
	12.4.1 CP14 c0, Debug ID Register
	12.4.2 CP14 c0, Debug ROM Address Register
	12.4.3 CP14 c0, Debug Self Address Offset Register
	12.4.4 CP14 c1, Debug Status and Control Register
	12.4.5 Data Transfer Register
	12.4.6 Watchpoint Fault Address Register
	12.4.7 Vector Catch Register
	12.4.8 Debug State Cache Control Register
	12.4.9 Instruction Transfer Register
	12.4.10 Debug Run Control Register
	12.4.11 Breakpoint Value Registers
	12.4.12 Breakpoint Control Registers
	12.4.13 Watchpoint Value Registers
	12.4.14 Watchpoint Control Registers
	12.4.15 Operating System Lock Status Register
	12.4.16 Authentication Status Register
	12.4.17 Device Power-down and Reset Control Register
	12.4.18 Device Power-down and Reset Status Register

	12.5 Management registers
	12.5.1 Processor ID Registers
	12.5.2 Claim Registers
	12.5.3 Lock Access Register
	12.5.4 Lock Status Register
	12.5.5 Device Type Register
	12.5.6 Debug Identification Registers

	12.6 Debug events
	12.6.1 Software debug event
	12.6.2 Halting debug event
	12.6.3 Behavior of the processor on debug events
	12.6.4 Debug event priority
	12.6.5 Watchpoint debug events

	12.7 Debug exception
	12.7.1 Effect of debug exceptions on CP15 registers and DBGWFAR
	12.7.2 Avoiding unrecoverable states

	12.8 Debug state
	12.8.1 Entering debug state
	12.8.2 Behavior of the PC and CPSR in debug state
	12.8.3 Executing instructions in debug state
	12.8.4 Writing to the CPSR in debug state
	12.8.5 Privilege
	12.8.6 Accessing registers and memory
	12.8.7 Coprocessor instructions
	12.8.8 Effect of debug state on non-invasive debug
	12.8.9 Effects of debug events on processor registers
	12.8.10 Exceptions in debug state
	12.8.11 Leaving debug state

	12.9 Cache debug
	12.9.1 Cache pollution in debug state
	12.9.2 Cache coherency in debug state
	12.9.3 Cache usage profiling

	12.10 External debug interface
	12.10.1 APB signals
	12.10.2 Miscellaneous debug signals
	12.10.3 Authentication signals

	12.11 Using the debug functionality
	12.11.1 Debug communications channel
	12.11.2 Programming breakpoints and watchpoints
	12.11.3 Single-stepping
	12.11.4 Debug state entry
	12.11.5 Debug state exit
	12.11.6 Accessing registers and memory in debug state

	12.12 Debugging systems with energy management capabilities
	12.12.1 Emulating power down


	13: Integration Test Registers
	13.1 About Integration Test Registers
	13.2 Summary of the processor registers used for integration testing
	13.3 Processor integration testing
	13.3.1 Using the Integration Test Registers
	13.3.2 Performing integration testing
	13.3.3 DBGITETMIF Register (ETM interface)
	13.3.4 DBGITMISCOUT Register (Miscellaneous Outputs)
	13.3.5 DBGITMISCIN Register (Miscellaneous Inputs)
	13.3.6 Integration Mode Control Register (DBGITCTRL)


	A: Signal Descriptions
	A.1 About the processor signal descriptions
	A.2 Global signals
	A.3 Configuration signals
	A.4 Interrupt signals, including VIC interface signals
	A.5 L2 interface signals
	A.5.1 AXI master port
	A.5.2 AXI master port error detection signals
	A.5.3 AXI slave port
	A.5.4 AXI slave port error detection signals
	A.5.5 ACP slave port
	A.5.6 ACP slave port error detection signals
	A.5.7 ACP master port
	A.5.8 ACP master port error detection signals
	A.5.9 AXI peripheral port
	A.5.10 AXI peripheral port error detection signals
	A.5.11 AHB peripheral port
	A.5.12 AHB peripheral port error detection signals

	A.6 TCM interface signals
	A.7 Redundant CPU signals
	A.8 Debug interface signals
	A.9 ETM interface signals
	A.10 Test signals
	A.11 MBIST signals
	A.12 Validation signals
	A.13 FPU signals
	A.14 Split/Lock
	A.15 Power modes

	B: Cycle Timings and Interlock Behavior
	B.1 About cycle timings and interlock behavior
	B.1.1 Instruction execution overview
	B.1.2 Conditional instructions
	B.1.3 Flag-setting instructions
	B.1.4 Definition of terms
	B.1.5 Assembler language syntax

	B.2 Register interlock examples
	B.3 Data processing instructions
	B.3.1 Cycle counts if destination is not PC
	B.3.2 Cycle counts if destination is the PC
	B.3.3 Example interlocks

	B.4 QADD, QDADD, QSUB, and QDSUB instructions
	B.5 Media data-processing
	B.6 Sum of Absolute Differences (SAD)
	B.6.1 Example interlocks

	B.7 Multiplies
	B.8 Divide
	B.9 Branches
	B.10 Processor state updating instructions
	B.11 Single load and store instructions
	B.11.1 Base register update

	B.12 Load and Store Double instructions
	B.13 Load and Store Multiple instructions
	B.13.1 Load and Store Multiples, other than load multiples including the PC
	B.13.2 Load Multiples, where the PC is in the register list
	B.13.3 Example Interlocks

	B.14 RFE and SRS instructions
	B.15 Synchronization instructions
	B.16 Coprocessor instructions
	B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions
	B.18 Miscellaneous instructions
	B.19 Floating-point register transfer instructions
	B.20 Floating-point load/store instructions
	B.21 Floating-point single-precision data processing instructions
	B.22 Floating-point double-precision data processing instructions
	B.23 Dual issue
	B.23.1 Dual issue rules
	B.23.2 Permitted combinations


	C: ECC Schemes
	C.1 ECC scheme selection guidelines

	D: Memory Ordering
	D.1 Memory ordering
	D.2 Virtual AXI peripheral interface

	E: Revisions

